Coded Aperture Design by Motion Estimation Using Sparse Representation in Adaptive Compressed Spectral Video Sensing

> PhD(c) N. Diaz¹, MS(c) C. Noriega ¹ Ph.D A. Basarab ³, Ph.D J-Y. Tourneret ³ Advisor: Ph.D H. Arguello ²

¹Department of Electrical and Computer Engineering, ²Department of Computer Science Universidad Industrial de Santander, Bucaramanga, Colombia. ³University of Toulouse, Toulouse, Francia.

March 5, 2022

Outline

Introduction

Challenges in Video-CSI

2 Methods

- Motion Estimation in Spectral Imaging
- Sparse regularization term
- Dictionary Filters and Coefficient Maps
- Adaptive Video Colored Coded Aperture Design

- Cimulation
- Simulation Parameters
- Quality of Image Reconstruction

4 Conclusions

• Video Motion Estimation Algorithm

Random color aperture Blue noise aperture¹.

- Traditionally, coded apertures for video-CSI are designed randomly, ignoring the redundancy of the static and dynamic scene.
- Optimal approaches for sampling CSI could be extended to Video-CSI, however, those approaches promote complementary coded apertures, ignoring the motion between a couple of frames.

¹Correa, Claudia, 2016 [1]

Proposed Adaptive Coded Aperture Design

Proposed Spectral Video Motion Estimation

- A pair of successive frames F^{d−1}_H and F^d_H (of ℝ^{M×N×L}) from a spectral video acquired at time instants d − 1 and d
- Denote as $\mathbf{S}_{(\ell,x)}^d$ and $\mathbf{S}_{(\ell,y)}^d \in \mathbb{R}^{M \times N \times L}$ the video motions for the frame *d* along the *x* and *y* axes ².
- The motion estimation field is formulated as the minimization of a cost function with energy $E_{\text{data}}(\mathbf{S}^d, \mathbf{F}^d_H, \mathbf{F}^{d-1}_H)$ penalized by spatial and sparse regularizations, i.e.,

 $\underset{\mathbf{X},\mathbf{S}^{d}}{\operatorname{argmin}} \left\{ E_{\operatorname{data}}(\mathbf{S}^{d},\mathbf{F}_{H}^{d},\mathbf{F}_{H}^{d-1}) + \lambda_{s} E_{\operatorname{spatial}}(\mathbf{S}^{d}) + \lambda_{p} E_{\operatorname{sparse}}(\mathbf{S}^{d},\mathbf{X}) \right\}$ (1)

 $\begin{array}{lll} \mathbf{F}^{d-1} \text{ spectral} & \mathbf{F}^{d} \text{ spectral video} & \text{Horizontal motion} & \text{Vertical motion} \\ \text{video sequence.} & \mathbf{S}^{d}_{(\ell,x)}. & \mathbf{S}^{d}_{(\ell,y)}. \end{array}$

PhD(c) Nelson Diaz

Guadeloupe, CAMSAP 2019

²Note that the displacement vectors components along x and y are estimated independently for simplicity, i.e., $S^{d} = S^{d}_{(\ell,x)}$ or $S^{d} = S^{d}_{(\ell,y)}$

Optical flow assumes brightness constancy and temporal consistency, leading to the following optical flow equation

$$\partial_t \mathbf{f}_H^d + \nabla \mathbf{f}_H^T \mathbf{s}^d = 0 \tag{2}$$

where $\mathbf{s}^d \in \mathbb{R}^{NM}$ represents the flow field such that \mathbf{s}^d_{ℓ} is the vectorized video motion \mathbf{S}_{ℓ} , $\partial_t \mathbf{f}^d_H$ denotes the temporal derivative and $\nabla \mathbf{f}^T_H$ is the spatial gradient of the brightness. The data fidelity term resulting from optical flow is

$$E_{\text{data}}(\mathbf{s}^{d}, \mathbf{f}_{H}^{d}, \mathbf{f}_{H}^{d-1}) = \left\| \partial_{t} \mathbf{f}_{H}^{d} + \nabla \mathbf{f}_{H}^{T} \mathbf{s}^{d} \right\|_{2}^{2}$$
(3)

where $\|.\|_2^2$ is the squared ℓ_2 norm. The first regularization term promotes smooth variations in the video motion field by using a standard total variation function, $E_{\text{spatial}}(\mathbf{S}^d) = \|\nabla \mathbf{S}^d\|_2^2$

Sparse Regularization Term

 \mathbf{S}^{d} is modeled as a convolution between the coefficient maps \mathbf{X}_{v} and a set of V filters \mathbf{G}_{v} [2], $\mathbf{S}^{d} \approx \sum_{v=1}^{V} \mathbf{G}_{v} * \mathbf{X}_{v}$

The second regularization term promotes sparsity of the motion vectors in a dictionary of representative motions. It decomposes the video motion \mathbf{S}^d as a convolution between V sparse coefficient maps \mathbf{X}_v and a set of V filters \mathbf{G}_v , i.e.,

$$E_{\text{sparse}}(\mathbf{S}^{d}, \mathbf{X}) = \left\| \mathbf{S}^{d} - \sum_{\nu=1}^{V} \mathbf{G}_{\nu} * \mathbf{X}_{\nu} \right\|_{2}^{2}$$
(4)

where * denotes convolution.

The dictionary learning is performed by solving the following problem (where S_d denotes the training video sequence which was obtained using Horn-Schunck optical flow estimation)

					-
				R.	l
		p-1	0	-	E
					Ŀ

argmin

$$\mathbf{1}_{\mathbf{G}_{v},\mathbf{X}_{d,v}} \frac{1}{2} \sum_{d} \left\| \sum_{v} \mathbf{X}_{d,v} * \mathbf{G}_{v} - \widetilde{\mathbf{S}}^{d} \right\|_{2}^{2} + \lambda \sum_{v=1}^{V} \sum_{d} \|\mathbf{X}_{d,v}\|_{1}$$
 (5)
s.t. $\|\mathbf{G}_{v}\| = 1 \ \forall v = 1, ..., V.$
Once the dictionary \mathbf{G}_{v} has been determined, the coefficient maps of a
sequence of test images denoted as \mathbf{S}_{t}^{d} are obtained by solving the
following optimization problem

$$\operatorname{argmin}_{X_{v}} \frac{1}{2} \left\| \sum_{v=1}^{V} \mathbf{X}_{v} * \mathbf{G}_{v} - \mathbf{S}_{t}^{d} \right\|_{2}^{2} + \lambda \sum_{v=1}^{V} \|\mathbf{X}_{v}\|_{1}$$
(6)

which can again be replicated using the ADMM algorithm.

Spectral Video Motion Estimation

$$\underset{\mathbf{S}_{\ell}^{d}}{\operatorname{argmin}} \{ E_{\text{data}}(\hat{\mathbf{F}}_{H}^{d-1}, \hat{\mathbf{F}}_{H}^{d}, \mathbf{S}_{\ell}^{d-1}) + \lambda_{s} \|\nabla \mathbf{S}_{\ell}^{d-1}\|_{2}^{2} + \\ \lambda_{\rho}(k) \|\mathbf{S}_{\ell}^{d-1} - \sum_{v} \mathbf{G}_{v} * \mathbf{X}_{v}\|_{2}^{2} \} \text{ s.t. } \|\mathbf{G}_{v}\| = 1 \ \forall v$$

 $\mathbf{f}^d = \mathbf{\Psi}^d \mathbf{ heta}^d$ spectral video. Horizontal motion $\mathbf{S}^d_{(\ell, imes)}$.

Vertical motion
$$\mathbf{S}_{(\ell,y)}^d$$
.

Sensing matrix H^d

PhD(c) Nelson Diaz

Low Resolution Reconstruction and Interpolation

The low resolution datacube is computed by

$$\mathbf{\hat{f}}_L^{d-1} = \mathbf{\Psi}_L^{-1}(\underset{\boldsymbol{\theta}_L}{\operatorname{argmin}} \| \mathbf{y}^{d-1} - \mathbf{H}_L^{d-1} \mathbf{\Psi}_L^{d-1} \boldsymbol{\theta}_L^{d-1} \|_2^2 + \tau \| \boldsymbol{\theta}_L^{d-1} \|_1)$$

$$\mathbf{\hat{f}}_{L}^{d} = \mathbf{\Psi}_{L}^{-1}(\underset{\boldsymbol{\theta}_{L}}{\operatorname{argmin}} \| \mathbf{y}^{d} - \mathbf{H}_{L}^{d} \mathbf{\Psi}_{L}^{d} \boldsymbol{\theta}_{L}^{d} \|_{2}^{2} + \tau \| \boldsymbol{\theta}_{L}^{d} \|_{1})$$

where \mathbf{H}_{L}^{0} is the LR sensing matrix, Ψ_{L}^{d} is the LR representation basis, and θ_{L}^{d} is the vectorization of a sparse vector for the LR reconstruction.

The LR datacube is interpolated using P(.) a bilinear interpolator $\mathbf{\hat{f}}_{H}^{d-1} \leftarrow \mathbf{P}(\mathbf{\hat{f}}_{L}^{d-1})$, and $\mathbf{\hat{f}}_{H}^{d} \leftarrow \mathbf{P}(\mathbf{\hat{f}}_{L}^{d})$.

Design of Video Adaptive Colored Coded Aperture (VA-CCA)

$$\frac{\text{Motion estimation}}{\sqrt{(\mathbf{S}_{(\ell,x)}^d)^2 + (\mathbf{S}_{(\ell,y)}^d)^2}}.$$

Thresholding
$$\mathbf{Q}_{\ell}^{d} \leftarrow (\mathbf{S}_{\ell}^{d-1}, \mathbf{S}_{\ell}^{d})$$

Next coded aperture

$$\mathbf{r}^d_\ell \leftarrow \mathbf{q}^d_\ell \odot \mathbf{b}^d_\ell + (\mathbf{1} - \mathbf{q}^d_\ell) \odot \hat{\mathbf{b}}^d_\ell$$

Training spectral motion sequence $\tilde{\mathbf{S}}^d$

Test spectral motion sequence S_t^d

Step	Parameters	Values	
	Database 23 frames	Peasant woman 1 [3]	
	Filter size	8 imes 8	
Dictionary	Filters number	M = 32	
learning	Sparsity term	$\lambda=0.05$	
	Number of iteration	500	
Sparso coding	Database 23 frames	Peasant woman 2 [3]	
Sparse county	Number of iteration	500	
Video motion Regularization parameter		$\lambda_s = 0.75$	
estimation	Sparsity term (video)	$\lambda_d = \{1 \times 10^{-6} \times 10^{-3}\}$	

Average PSNR=20.4296 dB. Average PSNR=21.1145 dB. Average PSNR=19.6498 dB. Average PSNR=18.7091dB.

Size of
$$\mathbf{F}^d \in \mathbb{R}^{128 imes 128 imes 12}$$
 and 23 frames.

Conclusions

- A new design of adaptive colored coded apertures (VA-CCA) for spectral video.
- The approach provides a motion estimation between frames to sample the static and the dynamic scene differently.
- The proposed approach overcomes, block-unblock CA (2.4 dB), random-colored CA (1.46 dB), non-adaptive blue noise (0.68 dB).

- C. V. Correa, H. Arguello, and G. R. Arce, "Spatiotemporal blue noise coded aperture design for multi-shot compressive spectral imaging," *J. Opt. Soc. Am. A*, vol. 33, no. 12, pp. 2312–2322, Dec 2016. [Online]. Available: http://josaa.osa.org/abstract.cfm?URI=josaa-33-12-2312
- B. Wohlberg, "Efficient algorithms for convolutional sparse representations," *IEEE Trans. Image Process.*, vol. 25, no. 1, pp. 301–315, Jan 2016.
- K. M. León-López, L. V. Galvis Carreño, and H. Arguello Fuentes, "Temporal colored coded aperture design in compressive spectral video sensing," *IEEE Transactions on Image Processing*, vol. 28, no. 1, pp. 253–264, Jan 2019.

Video Motion Estimation Algorithm (Initialization)

Input: $\lambda_s, \lambda_p, K, D, \lambda, \rho, \quad \widetilde{S}, S_t$: Training/test video motions **Output:** S_{ℓ}^d

- 1: function CODED APERTURE DESIGN USING VIDEO MOTION ESTIMATION $(\mathbf{y}^0, \mathbf{y}^1, \lambda_s, \lambda_p, \mathcal{K}, J, \lambda, \rho, \mathbf{\tilde{S}}, \mathbf{S}_t)$
- 2: $\mathbf{G}_{v} \leftarrow \text{Computes the dictionary by solving (5)}$
- 3: $X_{v} \leftarrow \text{Computes the coefficient maps by solving (6)}$ 4: $y^{0} \leftarrow H^{0}f$ \triangleright First snapshot
- 5: $\mathbf{f}_{L}^{0} \leftarrow \Psi_{L}^{-1}(\operatorname{argmin}_{\boldsymbol{\theta}_{L}} \| \mathbf{y}^{0} \mathbf{H}_{L}^{0} \Psi_{L}^{d} \boldsymbol{\theta}_{L}^{d} \|_{2}^{2} + \tau \| \boldsymbol{\theta}_{L}^{d} \|_{1})$ 6:
 - \triangleright Low-resolution
- 7: $\hat{\mathbf{f}}_{H}^{0} \leftarrow \mathbf{P}(\hat{\mathbf{f}}_{L}^{0})$ > Interpolation8: $\hat{\mathbf{F}}_{H}^{0} \leftarrow rearrange(\hat{\mathbf{f}}_{H}^{0})$ > Rearrange
- 9: $\mathbf{\hat{f}} \leftarrow \Psi^{-1}(\operatorname{argmin}_{\boldsymbol{\theta}} \| \mathbf{y} \mathbf{H}\Psi\boldsymbol{\theta} \|_{2}^{2} + \tau \| \boldsymbol{\theta} \|_{1})$
- 10: Motion estimation and Adaptive Coded Aperture Desing 11: return S_{ℓ}^{d} \triangleright (Estimated motion field)

Motion estimation and Adaptive Coded Aperture Design

1: for
$$k \leftarrow 1, K$$
 do
2: for $d \leftarrow 1, D$ do
3: $\hat{\mathbf{f}}_{L}^{d} \leftarrow \Psi_{L}^{-1}(\operatorname{argmin}_{\theta_{L}} \| \mathbf{y}^{d} - \mathbf{H}_{L}^{d} \Psi_{L}^{d} \theta_{L}^{d} \|_{2}^{2} + \tau \| \theta_{L}^{d} \|_{1})$
4: \triangleright Low-resolution
5: $\hat{\mathbf{f}}_{H}^{d} \leftarrow \mathbf{P}(\hat{\mathbf{f}}_{L}^{d}) \qquad \triangleright$ Interpolation
6: $\hat{\mathbf{F}}_{H}^{d} \leftarrow rearrange(\hat{\mathbf{f}}_{H}^{d}) \qquad \triangleright$ Rearrange
7: for $\ell \leftarrow 1, L$ do
8: $\operatorname{argmin}_{\mathbf{S}_{\ell}^{d}} \{ E_{\text{data}}(\hat{\mathbf{F}}_{H}^{d-1}, \hat{\mathbf{F}}_{H}^{d}, \mathbf{S}_{\ell}^{d-1}) + \lambda_{s} \| \nabla \mathbf{S}_{\ell}^{d-1} \|_{2}^{2} + \lambda_{p}(k) \| \mathbf{S}_{\ell}^{d-1} - \sum_{v} \mathbf{G}_{v} * \mathbf{X}_{v} \|_{2}^{2} \}$
s.t. $\| \mathbf{G}_{v} \| = 1 \forall v \qquad \triangleright$ Video motion estimation
9: $\mathbf{Q}_{\ell}^{d} \leftarrow (\mathbf{S}_{\ell}^{d-1}, \mathbf{S}_{\ell}^{d}) \qquad \triangleright$ Thresholding motion
10: $\mathbf{q}_{\ell}^{d} \leftarrow vec(\mathbf{Q}_{\ell}^{d}) \qquad \triangleright$ Vectorized motion areas
11: $\mathbf{r}_{\ell}^{d} \leftarrow \mathbf{q}_{\ell}^{d} \odot \mathbf{b}_{\ell}^{d} + (\mathbf{1} - \mathbf{q}_{\ell}^{d}) \odot \hat{\mathbf{b}}_{\ell}^{d} \qquad \triangleright$ Next code
12: $\mathbf{H}_{\ell}^{d} \leftarrow rearrange(\mathbf{r}_{\ell}^{d}) \qquad \triangleright$ Next snapshot

Parameters λ and ρ

	$ ho_{0} = 25$	$ ho_1 = 50$	$ ho_2 = 100$	$ ho_{3} = 150$
$\lambda_0=0.0005$	30.9600	30.8260	30.7236	31.1311
$\lambda_1 = 0.0001$	38.1156	37.7255	38.6955	39.9385
$\lambda_2 = 0.00005$	33.5062	32.0604	40.3777	38.4921
$\lambda_3 = 0.00001$	29.6564	30.5600	30.0820	29.5902
$\lambda_4 = 0.000001$	34.5530	28.1833	33.5431	30.4982

Table 1: Image quality (PSNR) with 100 iteration of (CBPDN) for different choices of λ and ρ by using the motion horizontal ground-truth.

	$ ho_{0} = 25$	$ ho_1 = 50$	$ ho_2=100$	$ ho_{3} = 150$
$\lambda_0 = 0.0005$	37.7552	38.2876	38.5107	38.6064
$\lambda_1 = 0.0001$	41.3404	39.6111	39.7874	40.1052
$\lambda_2 = 0.00005$	41.6682	39.8263	40.6523	42.0653
$\lambda_3 = 0.00001$	42.1040	39.8192	40.1028	49.2796
$\lambda_4 = 0.000001$	41.0436	39.6918	40.9101	38.4830

Image quality (PSNR) with 100 iteration of (CBPDN) for different choices of λ and ρ by using the motion vertical ground-truth.