Coded Aperture Design by Motion Estimation Using

 Sparse Representation in Adaptive Compressed Spectral Video Sensing
PhD(c) N. Diaz ${ }^{1}$, MS(c) C. Noriega ${ }^{1}$

Ph.D A. Basarab ${ }^{3}$, Ph.D J-Y. Tourneret ${ }^{3}$ Advisor: Ph.D H. Arguello ${ }^{2}$
${ }^{1}$ Department of Electrical and Computer Engineering,
${ }^{2}$ Department of Computer Science
Universidad Industrial de Santander, Bucaramanga, Colombia.
${ }^{3}$ University of Toulouse, Toulouse, Francia.
March 5, 2022

Outline

(1) Introduction

- Challenges in Video-CSI
(2) Methods
- Motion Estimation in Spectral Imaging
- Sparse regularization term
- Dictionary Filters and Coefficient Maps
- Adaptive Video Colored Coded Aperture Design
(3) Results
- Simulation Parameters
- Quality of Image Reconstruction
(4) Conclusions
- Video Motion Estimation Algorithm

Challenges in Video-CSI

- Traditionally, coded apertures for video-CSI are designed randomly, ignoring the redundancy of the static and dynamic scene.
- Optimal approaches for sampling CSI could be extended to Video-CSI, however, those approaches promote complementary coded apertures, ignoring the motion between a couple of frames.

[^0]
Proposed Adaptive Coded Aperture Design

Proposed Spectral Video Motion Estimation

- A pair of successive frames \mathbf{F}_{H}^{d-1} and \mathbf{F}_{H}^{d} (of $\mathbb{R}^{M \times N \times L}$) from a spectral video acquired at time instants $d-1$ and d
- Denote as $\mathbf{S}_{(\ell, x)}^{d}$ and $\mathbf{S}_{(\ell, y)}^{d} \in \mathbb{R}^{M \times N \times L}$ the video motions for the frame d along the x and y axes ${ }^{2}$.
- The motion estimation field is formulated as the minimization of a cost function with energy $E_{\text {data }}\left(\mathbf{S}^{d}, \mathbf{F}_{H}^{d}, \mathbf{F}_{H}^{d-1}\right)$ penalized by spatial and sparse regularizations, i.e.,

$$
\begin{equation*}
\underset{\mathbf{X}, \mathbf{S}^{d}}{\operatorname{argmin}}\left\{E_{\text {data }}\left(\mathbf{S}^{d}, \mathbf{F}_{H}^{d}, \mathbf{F}_{H}^{d-1}\right)+\lambda_{s} E_{\text {spatial }}\left(\mathbf{S}^{d}\right)+\lambda_{p} E_{\text {sparse }}\left(\mathbf{S}^{d}, \mathbf{X}\right)\right\} \tag{1}
\end{equation*}
$$

\mathbf{F}^{d-1} spectral
video sequence.

F^{d} spectral video sequence.

Horizontal motion $\mathbf{S}_{(\ell, x)}^{d}$.

Vertical motion
$\mathbf{S}_{(\ell, y)}^{d}$.

$$
\mathbf{S}_{(\ell, y)^{d}}^{d}
$$

[^1]
Data Fidelity and Spatial Regularization

Optical flow assumes brightness constancy and temporal consistency, leading to the following optical flow equation

$$
\begin{equation*}
\partial_{t} \mathbf{f}_{H}^{d}+\nabla \mathbf{f}_{H}^{T} \mathbf{s}^{d}=0 \tag{2}
\end{equation*}
$$

where $\mathbf{s}^{d} \in \mathbb{R}^{N M}$ represents the flow field such that \mathbf{s}_{ℓ}^{d} is the vectorized video motion $\mathbf{S}_{\ell}, \partial_{t} \mathbf{f}_{H}^{d}$ denotes the temporal derivative and $\nabla \mathbf{f}_{H}^{T}$ is the spatial gradient of the brightness. The data fidelity term resulting from optical flow is

$$
\begin{equation*}
E_{\mathrm{data}}\left(\mathbf{s}^{d}, \mathbf{f}_{H}^{d}, \mathbf{f}_{H}^{d-1}\right)=\left\|\partial_{t} \mathbf{f}_{H}^{d}+\nabla \mathbf{f}_{H}^{T} \mathbf{s}^{d}\right\|_{2}^{2} \tag{3}
\end{equation*}
$$

where $\|.\|_{2}^{2}$ is the squared ℓ_{2} norm. The first regularization term promotes smooth variations in the video motion field by using a standard total variation function, $E_{\text {spatial }}\left(\mathbf{S}^{d}\right)=\left\|\nabla \mathbf{S}^{d}\right\|_{2}^{2}$

Sparse Regularization Term

(b)

\mathbf{S}^{d} is modeled as a convolution between the coefficient maps \mathbf{X}_{v} and a set of V filters \mathbf{G}_{v} [2], $\mathbf{S}^{d} \approx \sum_{v=1}^{V} \mathbf{G}_{v} * \mathbf{X}_{v}$

The second regularization term promotes sparsity of the motion vectors in a dictionary of representative motions. It decomposes the video motion \mathbf{S}^{d} as a convolution between V sparse coefficient maps \mathbf{X}_{v} and a set of V filters \mathbf{G}_{v}, i.e.,

$$
\begin{equation*}
E_{\text {sparse }}\left(\mathbf{S}^{d}, \mathbf{X}\right)=\left\|\mathbf{S}^{d}-\sum_{v=1}^{v} \mathbf{G}_{v} * \mathbf{X}_{v}\right\|_{2}^{2} \tag{4}
\end{equation*}
$$

where $*$ denotes convolution.

Dictionary Filters and Coefficients Maps

The dictionary learning is performed by solving the following problem (where \widetilde{S}_{d} denotes the training video sequence which was obtained using Horn-Schunck optical flow estimation)

$$
\begin{equation*}
\underset{\mathbf{G}_{v}, \mathbf{X}_{d, v}}{\operatorname{argmin}} \frac{1}{2} \sum_{d}\left\|\sum_{v} \mathbf{X}_{d, v} * \mathbf{G}_{v}-\widetilde{\mathbf{S}}^{d}\right\|_{2}^{2}+\lambda \sum_{v=1}^{v} \sum_{d}\left\|\mathbf{X}_{d, v}\right\|_{1} \tag{5}
\end{equation*}
$$

$$
\text { s.t. } \quad\left\|\mathbf{G}_{v}\right\|=1 \forall v=1, \ldots, V
$$

Once the dictionary \mathbf{G}_{v} has been determined, the coefficient maps of a sequence of test images denoted as \mathbf{S}_{t}^{d} are obtained by solving the following optimization problem

$$
\begin{equation*}
\underset{X_{v}}{\operatorname{argmin}} \frac{1}{2}\left\|\sum_{v=1}^{v} \mathbf{X}_{v} * \mathbf{G}_{v}-\mathbf{S}_{t}^{d}\right\|_{2}^{2}+\lambda \sum_{v=1}^{V}\left\|\mathbf{X}_{v}\right\|_{1} \tag{6}
\end{equation*}
$$

which can again be replicated using the ADMM algorithm.

Spectral Video Motion Estimation

$$
\begin{aligned}
& \underset{\mathbf{S}_{\ell}^{d}}{\operatorname{argmin}}\left\{E_{\text {data }}\left(\hat{\mathbf{F}}_{H}^{d-1}, \hat{\boldsymbol{F}}_{H}^{d}, \mathbf{S}_{\ell}^{d-1}\right)+\lambda_{s}\left\|\nabla \mathbf{S}_{\ell}^{d-1}\right\|_{2}^{2}+\right. \\
& \left.\lambda_{p}(k)\left\|\mathbf{S}_{\ell}^{d-1}-\sum_{v} \mathbf{G}_{v} * \mathbf{X}_{v}\right\|_{2}^{2}\right\} \text { s.t. }\left\|\mathbf{G}_{v}\right\|=1 \forall v
\end{aligned}
$$

$\boldsymbol{f}^{d}=\boldsymbol{\Psi}^{d} \boldsymbol{\theta}^{d}$ spectral video.

Horizontal motion $\mathbf{S}_{(\ell, x)}^{d}$.

Vertical motion $\mathbf{S}_{(\ell, y)}^{d}$.

Compressive Spectral Video Sensing

Rows of \mathbf{H}^{d} represent the coded aperture.
 sequence.

Sensing matrix \mathbf{H}^{d}

Low Resolution Reconstruction and Interpolation

The low resolution datacube is computed by

$$
\begin{gathered}
\hat{\mathbf{f}}_{L}^{d-1}=\boldsymbol{\Psi}_{L}^{-1}\left(\underset{\boldsymbol{\theta}_{L}}{\operatorname{argmin}}\left\|\mathbf{y}^{d-1}-\mathbf{H}_{L}^{d-1} \boldsymbol{\Psi}_{L}^{d-1} \boldsymbol{\theta}_{L}^{d-1}\right\|_{2}^{2}+\tau\left\|\boldsymbol{\theta}_{L}^{d-1}\right\|_{1}\right) \\
\left.\hat{\mathbf{f}}_{L}^{d}=\boldsymbol{\Psi}_{L}^{-1} \underset{\boldsymbol{\theta}_{L}}{\operatorname{argmin}}\left\|\mathbf{y}^{d}-\mathbf{H}_{L}^{d} \boldsymbol{\Psi}_{L}^{d} \boldsymbol{\theta}_{L}^{d}\right\|_{2}^{2}+\tau\left\|\boldsymbol{\theta}_{L}^{d}\right\|_{1}\right)
\end{gathered}
$$

where \mathbf{H}_{L}^{0} is the $L R$ sensing matrix, Ψ_{L}^{d} is the LR representation basis, and $\boldsymbol{\theta}_{L}^{d}$ is the vectorization of a sparse vector for the LR reconstruction.

The LR datacube is interpolated using $P($.$) a bilinear$ interpolator $\hat{\mathbf{f}}_{H}^{\mathrm{d}-\mathbf{1}} \leftarrow \mathbf{P}\left(\hat{\mathbf{f}}_{L}^{d-1}\right)$, and $\hat{\mathbf{f}}_{H}^{\mathrm{d}} \leftarrow \mathbf{P}\left(\hat{\mathbf{f}}_{L}^{d}\right)$

Design of Video Adaptive Colored Coded Aperture (VA-CCA)

Motion estimation
$\sqrt{\left(\mathbf{S}_{(\ell, x)}^{d}\right)^{2}+\left(\mathbf{S}_{(\ell, y)}^{d}\right)^{2}}$.

Thresholding
$\mathbf{Q}_{\ell}^{d} \leftarrow\left(\mathbf{S}_{\ell}^{d-1}, \mathbf{S}_{\ell}^{d}\right)$

Next coded aperture
$\mathbf{r}_{\ell}^{d} \leftarrow \mathbf{q}_{\ell}^{d} \odot \mathbf{b}_{\ell}^{d}+\left(\mathbf{1}-\mathbf{q}_{\ell}^{d}\right) \odot \hat{\mathbf{b}}_{\ell}^{d}$

Simulation Parameters

Training spectral motion sequence $\widetilde{\mathbf{S}}^{d}$

Test spectral motion sequence \mathbf{S}_{t}^{d}

Step	Parameters	Values
	Database 23 frames	Peasant woman 1 [3]
	Filter size	8×8
Dictionary learning	Filters number	$M=32$
	Sparsity term	$\lambda=0.05$
	Number of iteration	500
Sparse coding	Database 23 frames	Peasant woman 2 [3]
	Number of iteration	500
Video motion	Regularization parameter	$\lambda_{s}=0.75$
estimation	Sparsity term (video)	$\lambda_{d}=\left\{1 \times 10^{-6} \times 10^{-3}\right\}$

Comparison of Quality of Image Reconstruction

Average $P S N R=20.4296 \mathrm{~dB}$.

Blue noise non adaptive (BNA).

Average $P S N R=21.1145 \mathrm{~dB}$. Average $P S N R=19.6498 \mathrm{~dB}$.

Video colored coded aperture Random colored coded (V-CCA).
aperture (R-CCA).

Average $\mathrm{PSNR}=18.7091 \mathrm{~dB}$.

Block-unblock coded aperture (BUA).

Size of $\mathbf{F}^{d} \in \mathbb{R}^{128 \times 128 \times 12}$ and 23 frames.

Conclusions

- A new design of adaptive colored coded apertures (VA-CCA) for spectral video.
- The approach provides a motion estimation between frames to sample the static and the dynamic scene differently.
- The proposed approach overcomes, block-unblock CA (2.4 dB), random-colored CA $(1.46 \mathrm{~dB})$, non-adaptive blue noise (0.68 dB).

Questions?

References

目 C. V. Correa, H. Arguello, and G. R. Arce, "Spatiotemporal blue noise coded aperture design for multi-shot compressive spectral imaging," J. Opt. Soc. Am. A, vol. 33, no. 12, pp. 2312-2322, Dec 2016. [Online]. Available: http://josaa.osa.org/abstract.cfm?URI=josaa-33-12-2312
B. Wohlberg, "Efficient algorithms for convolutional sparse representations," IEEE Trans. Image Process., vol. 25, no. 1, pp. 301-315, Jan 2016.
围 K. M. León-López, L. V. Galvis Carreño, and H. Arguello Fuentes, "Temporal colored coded aperture design in compressive spectral video sensing," IEEE Transactions on Image Processing, vol. 28, no. 1, pp. 253-264, Jan 2019.

Video Motion Estimation Algorithm (Initialization)

Input: $\lambda_{s}, \lambda_{p}, K, D, \lambda, \rho, \widetilde{\mathbf{S}}, \mathbf{S}_{t}$: Training/test video motions Output: \mathbf{S}_{ℓ}^{d}
1: function CODED APERTURE DESIGN USING VIDEO MOTION estimation $\left(\mathbf{y}^{0}, \mathbf{y}^{1}, \lambda_{s}, \lambda_{p}, K, J, \lambda, \rho, \widetilde{\mathbf{S}}, \mathbf{S}_{t}\right)$
2: $\quad \mathbf{G}_{v} \leftarrow$ Computes the dictionary by solving (5)
3: $\quad \mathbf{X}_{v} \leftarrow$ Computes the coefficient maps by solving (6)
4: $\quad \hat{y}^{0} \leftarrow \mathbf{H}^{0} \mathbf{f} \quad . \quad \hat{\mathbf{f}}_{L}^{0} \leftarrow \boldsymbol{\Psi}_{L}^{-1}\left(\operatorname{argmin}_{\boldsymbol{\theta}_{L}}\left\|\boldsymbol{y}^{0}-\mathbf{H}_{L}^{0} \boldsymbol{\Psi}_{L}^{d} \boldsymbol{\theta}_{L}^{d}\right\|_{2}^{2}+\tau\left\|\boldsymbol{\theta}_{L}^{d}\right\|_{1}\right)$
\triangleright First snapshot

$$
\hat{\mathbf{f}}_{L}^{0} \leftarrow \boldsymbol{\Psi}_{L}^{-1}\left(\operatorname{argmin}_{\boldsymbol{\theta}_{L}}\left\|\boldsymbol{y}^{0}-\mathbf{H}_{L}^{0} \boldsymbol{\Psi}_{L}^{d} \boldsymbol{\theta}_{L}^{d}\right\|_{2}^{2}+\tau\left\|\boldsymbol{\theta}_{L}^{d}\right\|_{1}\right)
$$

\triangleright Low-resolution
7: $\quad \hat{\mathbf{f}}_{H}^{0} \leftarrow \mathbf{P}\left(\hat{\mathbf{f}}_{L}^{0}\right)$
\triangleright Interpolation
8: $\quad \hat{\mathbf{F}}_{H}^{0} \leftarrow \operatorname{rearrange}\left(\hat{\mathbf{f}}_{H}^{0}\right) \quad \triangleright$ Rearrange
9: $\quad \hat{\mathbf{f}} \leftarrow \boldsymbol{\Psi}^{-1}\left(\operatorname{argmin}_{\boldsymbol{\theta}}\|\mathbf{y}-\mathbf{H} \boldsymbol{\Psi} \boldsymbol{\theta}\|_{2}^{2}+\tau\|\boldsymbol{\theta}\|_{1}\right)$
10: Motion estimation and Adaptive Coded Aperture Desing
11: return \mathbf{S}_{ℓ}^{d}
$\triangleright($ Estimated motion field)

Motion estimation and Adaptive Coded Aperture Design

1: for $k \leftarrow 1, K$ do
2: \quad for $d \leftarrow 1, D$ do
3: $\quad \hat{\mathbf{f}}_{L}^{d} \leftarrow \boldsymbol{\Psi}_{L}^{-1}\left(\operatorname{argmin}_{\boldsymbol{\theta}_{L}}\left\|\boldsymbol{y}^{d}-\mathbf{H}_{L}^{d} \boldsymbol{\Psi}_{L}^{d} \boldsymbol{\theta}_{L}^{d}\right\|_{2}^{2}+\tau\left\|\boldsymbol{\theta}_{L}^{d}\right\|_{1}\right)$
4:
5:
6:
7:
8:

9:
10:
11:
12:
13:

$$
\begin{aligned}
& \hat{\mathbf{f}}_{H}^{\mathrm{d}} \leftarrow \mathbf{P}\left(\hat{\mathbf{f}}_{L}^{d}\right) \\
& \hat{\mathbf{F}}_{H}^{d} \leftarrow \operatorname{rearrange}\left(\hat{\mathbf{f}}_{H}^{d}\right)
\end{aligned}
$$

\triangleright Low-resolution
\triangleright Interpolation
\triangleright Rearrange
: \quad for $\ell \leftarrow 1, L$ do
$\operatorname{argmin}_{\mathbf{S}_{\ell}^{d}}\left\{E_{\text {data }}\left(\hat{\mathbf{F}}_{H}^{d-1}, \hat{\mathbf{F}}_{H}^{d}, \mathbf{S}_{\ell}^{d-1}\right)+\right.$

$$
\left.\lambda_{s}\left\|\nabla \mathbf{S}_{\ell}^{d-1}\right\|_{2}^{2}+\lambda_{p}(k)\left\|\mathbf{S}_{\ell}^{d-1}-\sum_{v} \mathbf{G}_{v} * \mathbf{X}_{v}\right\|_{2}^{2}\right\}
$$

s.t. $\left\|\mathbf{G}_{v}\right\|=1 \forall v$ $\mathbf{Q}_{\ell}^{d} \leftarrow\left(\mathbf{S}_{\ell}^{d-1}, \mathbf{S}_{\ell}^{d}\right)$ $\mathbf{q}_{\ell}^{d} \leftarrow \operatorname{vec}\left(\mathbf{Q}_{\ell}^{d}\right)$
$\mathbf{r}_{\ell}^{d} \leftarrow \mathbf{q}_{\ell}^{d} \odot \mathbf{b}_{\ell}^{d}+\left(\mathbf{1}-\mathbf{q}_{\ell}^{d}\right) \odot \hat{\mathbf{b}}_{\ell}^{d}$ $\mathbf{H}_{\ell}^{d} \leftarrow \operatorname{rearrange}\left(\mathbf{r}_{\ell}^{d}\right)$
$\mathbf{y}^{d} \leftarrow \mathbf{H}^{d} \mathbf{f}$
\triangleright Video motion estimation
\triangleright Thresholding motion
\triangleright Vectorized motion areas
\triangleright Next code
\triangleright Rearrange
\triangleright Next snapshot

Parameters λ and ρ

$$
\begin{array}{lllll}
& \rho_{0}=25 & \rho_{1}=50 & \rho_{2}=100 & \rho_{3}=150 \\
\lambda_{0}=0.0005 & 30.9600 & 30.8260 & 30.7236 & 31.1311 \\
\lambda_{1}=0.0001 & 38.1156 & 37.7255 & 38.6955 & 39.9385 \\
\lambda_{2}=0.00005 & 33.5062 & 32.0604 & 40.3777 & 38.4921 \\
\lambda_{3}=0.00001 & 29.6564 & 30.5600 & 30.0820 & 29.5902 \\
\lambda_{4}=0.000001 & 34.5530 & 28.1833 & 33.5431 & 30.4982
\end{array}
$$

Table 1: Image quality (PSNR) with 100 iteration of (CBPDN) for different choices of λ and ρ by using the motion horizontal ground-truth.

$$
\begin{array}{lllll}
& \rho_{0}=25 & \rho_{1}=50 & \rho_{2}=100 & \rho_{3}=150 \\
\lambda_{0}=0.0005 & 37.7552 & 38.2876 & 38.5107 & 38.6064 \\
\lambda_{1}=0.0001 & 41.3404 & 39.6111 & 39.7874 & 40.1052 \\
\lambda_{2}=0.00005 & 41.6682 & 39.8263 & 40.6523 & 42.0653 \\
\lambda_{3}=0.00001 & 42.1040 & 39.8192 & 40.1028 & 49.2796 \\
\lambda_{4}=0.000001 & 41.0436 & 39.6918 & 40.9101 & 38.4830
\end{array}
$$

Image quality (PSNR) with 100 iteration of (CBPDN) for different choices of λ and ρ by using the motion vertical ground-truth.

[^0]: ${ }^{1}$ Correa, Claudia, 2016 [1]

[^1]: ${ }^{2}$ Note that the displacement vectors components along x and y are estimated independently for simplicity, i.e., $\mathbf{S}^{d}=\mathbf{S}_{(\ell, x)}^{d}$ or $\mathbf{S}^{d}=\mathbf{S}_{(\ell, y)}^{d}$

