Compressive light field spectral imaging in a single-sensor device by using coded apertures.

M. Marquez¹, N. Diaz², J. Bacca³, S. Pertuz², H. Arguello²

Universidad Industrial de Santander ¹Department of physics, Bucaramanga, Colombia. ²Department of Electrical Engineering, Bucaramanga, Colombia. ³Department of Systems and Informatics Engineering, Bucaramanga, Colombia.

June 15, 2017

June 15, 2017

1 / 19

Outline

- Light field imaging
- Compressive spectral imaging using microlens
- Oiscrete model
 - 3.1 Data structures3.2 Representation basis
- Simulation results

Onclusions

▲ □ ► ▲ □ ► ▲

Ways to collect plenoptic function

Figure 2: Way to collect the plenoptic function.

・ロト ・ 日 ・ ・ ヨ ・ ・ ヨ ・

Ways to collect plenoptic function

Figure 3: Way to collect the plenoptic function.

・ロト ・ 日 ・ ・ ヨ ・ ・ ヨ ・

State of art: light field unarranged structure

Figure 4: Light field matrix representation

Image: A math a math

Contribution

- **1** It is compressive spectral imaging light field.
- Interpretation of the proposed architecture.
- The design of three data structures.
- The design and testing sparsifiers.

< 口 > < 同 >

Compressive spectral integral imaging with microlens

$$f_{1}(x, y, u, v, \lambda) = \int \int f_{0}(x, y, u, v, \lambda) A(u, v) \cos^{4} \beta du dv,$$
(1)
$$f(x, y) = \int_{\Lambda} \int_{\Delta x} \int_{\Delta y} (T(x, y, u, v) f_{1}(x, y, u, v, \lambda)) * h(x, y, u, v, \lambda) d\lambda d\hat{x} d\hat{y},$$
(2)

- A(u, v) is the aperture function.
- β ∈ ℝ is the angle subtended by the microlens.

- $T(x, y, u, v, \lambda)$ is the coded aperture.
- h(x, y, u, v, λ) is the dispersion system.
- Y(x, y) are compressive measurements.

Ph.D(c) Nelson Diaz

Υ

Discrete mathematical model

The energy captured on the detector that comes from the (m, n)-th angle, can be written as

$$(Y_{i,j})_{m,n} = \sum_{k} F_{i,(j-k),k,m,n} T_{i,(j-k),m,n} + w_{(m,n,i,j)},$$
(3)

where $T_{i,j,m,n}$ be the discretized coded aperture. In general, Eq. (3) can be expressed in vector form as

$$\mathbf{y} = \mathbf{H}\mathbf{f} + \mathbf{w},\tag{4}$$

where $\mathbf{w} \in \mathbb{R}^{KM(N+L-1)UV}$ represent the noise in the detector. This requires solving the optimization problem

$$\widehat{\mathbf{f}} = \Psi \{ \arg\min_{\boldsymbol{\theta}} \| \mathbf{y} - \mathbf{H} \Psi \boldsymbol{\theta} \|_2 + \tau \| \boldsymbol{\theta} \|_1 \}$$
(5)

where θ is an S-sparse representation of **f** on the basis Ψ , and τ is a regularization constant.

Ph.D(c) Nelson Diaz

Data structure

Mosaicking

Rotating

Macro

- **Mosaicking:** Spatio-spectral images concatenate along the angular dimension.
- **Rotating:** Similar to mosaicking, but favoring the continuity of spatial patterns.
- **Macro:** Pixels in the same spatial and spectral position are concatenated along the angular dimension.

Data structures and representation basis.

Figure 6: PSNR of the reconstructed image as a function of the percentage of coefficients for its representation. Here, W:wavelet, C:cosine, I:identity.

- ∢ 🗇 እ

- ∢ ∃ ▶

Analysis of the data structures

Figure 7: PSNR reconstructed images as a function of the percentage of coefficients in the *WWCII* representation base, and the macro structure.

Light field reconstruction: Scene 1

(a) Original

(b) Macro

(c) Unarranged

・ロン ・四 ・ ・ ヨン ・ ヨン

Figure 8: Reconstruction of light-field images with noise (SNR = 10) using the proposed architecture. The reconstruction using the macro and unarranged structure with WWCII base are 33.75 [dB] and 29.91 [dB], respectively.

Light field reconstruction: Scene 2

Ph.D(c) Nelson Diaz

COSI

June 15, 2017 13 / 19

PSNR against number of spectral bands

Image	Data	Numbers of spectral bands [L]			
	structure	3	4	6	8
Scene 1	Macro	26.83	30.73	31.16	33.75
	Unarranged	23.21	27.45	28.74	29.91
Scene 2	Macro	25.35	29.99	31.54	33.50
	Unarranged	25.08	29.60	31.12	32.46

Table 1: Mean reconstruction PSNR in dB for two multispectral images with spectral bands of L = 3, 4, 6, 8, and numbers of shots $Q = \lfloor L/2 \rfloor$, respectively.

(日) (同) (三) (三)

PSNR against number of snapshots, including noise

SNR [dB]	Data	Numbers of shots [Q]				
	structure	1	2	3	4	
10	Macro	24.45	26.05	27.17	28.79	
	Unarranged	20.33	23.99	24.83	25.83	
15	Macro	24.84	28.01	30.64	32.54	
	Unarranged	22.13	24.83	26.76	28.34	
20	Macro	26.04	29.22	31.47	33.44	
	Unarranged	22.42	25.08	27.44	29.71	

Table 2: Mean reconstruction PSNR in dB with spectral bands of L = 8, numbers of shots Q = 1, 2, 3, 4, and three different noise levels (*SNR* = 10, 15, 20 dB), respectively.

(日) (同) (三) (三)

PSNR against number of snapshots for the two scenes

Image	Data	Numbers of shots [Q]			
	structure	1	2	3	4
Scene 1	Macro	26.33	29.36	31.78	33.75
	Unarranged	22.48	25.24	27.90	29.91
Scene 2	Macro	24.68	28.35	31.34	33.50
	Unarranged	23.88	27.61	30.62	32.46

Table 3: Mean reconstruction PSNR in dB with spectral bands of L = 8, and numbers of shots Q = 1, 2, 3, 4, respectively.

Conclusions

- It has been proposed the compressive light field spectral imaging in a single-sensor using coded apertures and microlens.
- Four sparsifying basis are studied studies to determine the best sparsest representation is obtained with **Wavelet-Wavelet-Cosine**.
- Different structures are tested the best results are obtained with the **macrostructure** up to **3 dB** with respect to the unarranged.

(日) (周) (三) (三)

Any Question?

Thanks for your attention!

3

• • • • • • • • • • • •