

IMPLEMENTATION OF ADAPTIVE COLORED CODED APERTURE BY GRADIENT THRESHOLDING ALGORITHM

NELSON DIAZ, HOOVER RUEDA AND HENRY ARGUELLO UNIVERSIDAD INDUSTRIAL DE SANTANDER

INTRODUCTION

METHODS

Figure 1: Implementation in laboratory

OBJECTIVES

This paper implements the adaptive colored coded apertures for compressive spectral imaging.

BACKGROUND

The discrete model of the C-CASSI:

 $Y_{ij}^{\ell} = \sum_{k=1}^{L-1} F_{i(j-k)k} T_{i(j-k)k}^{\ell} + \omega_{ij}, \quad (1)$

where $Y_{i,j}$ is the $(i,j)^{th}$ measurement. The size of the detector is $N \times M$. The data cube *F* is $N \times N \times L$ and ω_{ij} is the white noise. To improve the quality of image reconstruc**Figure 3:** Sketch of C-CASSI. The red dashed line represents the GTA algorithm.

9:

10:

11:

Algorithm 1 Gradient thresholding algorithm

Require: y^0 , H^0 , Ensure: **f** 1: function $GTA(y^0, H^0)$ for $\ell \leftarrow 0, K - 1$ do 2: $\|\hat{\mathbf{f}}_L^\ell \leftarrow \Psi_L(\operatorname{argmin}_{\boldsymbol{\theta}_L} \|\mathbf{y} - \mathbf{H}_L \Psi_L \boldsymbol{\theta}_L \|_2^2 + 13:$ 3: $au \| oldsymbol{ heta}_L \|_1$ \triangleright Low-resolution 14:

$$\begin{aligned} & \mathbf{for} \ j \leftarrow 0, N^2 L - 1 \ \mathbf{do} \\ & k = \lfloor j/N^2 \rfloor, l = j \mod N^2 \\ & (\mathbf{t}_k^\ell)_l \leftarrow t_j^\ell \qquad \qquad \triangleright \text{Rearrange } \mathbf{r} \\ & \mathbf{for} \ i \leftarrow 0, KV - 1 \ \mathbf{do} \\ & \mathbf{if} \ i - \ell_i V = j - k_j N' \ \mathbf{then} \\ & (\mathbf{H}_i)_j \leftarrow (\mathbf{r}_{k_j}^{\ell_i})_{i-\ell_i v - k_j N} \end{aligned}$$

tion it is possible to capture multiple snapshot. The compressive measurements for the multiple snapshot is given by

$$\mathbf{y}^{\ell} = \mathbf{H}\mathbf{f} + \omega,$$

(2)

where \mathbf{y}^{ℓ} is ℓ^{th} compressive measurements, **H** is the measurement matrix and $\mathbf{f} = \boldsymbol{\Psi} \boldsymbol{\theta}$ is the data cube. f can be recovered by solving

$$\hat{\mathbf{f}} = \Psi(\underset{\boldsymbol{\theta}}{\operatorname{argmin}} \|\mathbf{y} - \mathbf{H}\Psi\boldsymbol{\theta}\|_2 + \tau \|\boldsymbol{\theta}\|_1) \quad (3)$$

Figure 2: Basic scheme of compressive sensing.

Figure 4: Bear-stars scene, multispectral database, $N \times N \times L$, where N = 512, and L = 12.

10,4

 \bullet - Random C-CASSI K = 3

- Adaptive C-CASSI K =

Figure 5: RGB comparison random C-CASSI and adaptive C-CASSI, number of snapshots K = 3.

REFERENCES

- [1] H. Arguello and G. R. Arce. Colored coded aperture design by concentration of measure in compressive spectral imaging. *IEEE Trans*actions on Image Processing, 23(4):1896–1908, April 2014.
- Nelson Diaz, Hoover Rueda, and H. Arguello. High-dynamic range compressive spectral imaging by grayscale coded aperture adaptive filtering. Ingeniería e Investigación, 35(3):53–60, 2015.

CONCLUSION

Quality of image reconstruction of the adaptive C-CASSI is compared with the random C-CASSI. The proposed method improves the quality of reconstruction in up to 2 dB.

FUTURE RESEARCH

In the future the adaptive colored filter array will be optimized improving the quality of image reconstruction. The approach will be test with other compressive spectral imaging architectures.

CONTACT INFORMATION

Name Henry Arguello Fuentes Group HDSP Web hdspgroup.com Email henarfu@uis.edu.co **Office** Laboratorios pesados 333. Laboratory Optics laboratory LP 255.