Compressive Spectral Video by Optimal 4D-Sphere Packing

Dr. Nelson Diaz ${ }^{1}$

MSc. Alejandro Alvarado ${ }^{1}$

Dr. Pablo Meza ${ }^{2}$

Dr. Esteban Vera ${ }^{1}$
${ }^{1}$ School of Electrical Engineering, Pontificia Universidad Católica de Valparaíso (PUCV), Valparaíso, Chile.
${ }^{2}$ Department of Electrical Engineering, Universidad de la Frontera (UFRO), Temuco, Chile.
nelson.diaz@pucv.cl

Traditional Approaches to Capture Spectral Images

Point scan
Spectral res: high Speed: low

Line scan
Spectral res: high Speed: medium

[^0]
Spectral Video Applications

${ }^{2}$ K. Takumi, K. Watanabe, Q. Ha, A. Tejero-De-Pablos, Y. Ushiku, and Tatsuya Harada., "Multispectral Object Detection for Autonomous Vehicles," in In Proceedings of the on Thematic Workshops of ACM Multimedia, 2017.
${ }^{3}$ Hu, Z., Fang, C., Li, B. et al., "First-in-Human Liver-Tumour Surgery Guided by Multispectral Fluorescence Imaging in the Visible and Near-infrared-I/II Windows," in Nat Biomed Eng, vol. 4, pp. 259-271, 2020.
4 Jon W. Stewart, Jarrett H. Vella, Wei Li, Shanhui Fan, and Maiken H. Mikkelsen, "Ultrafast Pyroelectric Photodetection with On-Chip

What is Sphere Packing?

The sphere packing problem asks for the densest packing of \mathbb{R}^{n} with congruent balls. Equivalent to answer the question:

What is the largest fraction of \mathbb{R}^{n} that can be covered by congruent balls with disjoint interiors?

Sphere Packing Density

One-dimensional sphere packing is boring:

density=1

Two-dimensional sphere packing is more interesting and attractive

density $=\frac{\pi}{\sqrt{12}} \approx 0.9068$

Three dimensions strains human ability to prove

density $=\frac{\pi}{\sqrt{18}} \approx 0.7404$

What happens in four dimensions?

Sphere Packing Density in \mathbb{R}^{n} and Applications

n	density	n	density	n	density	n	density
1	1.00000	7	0.29529	13	0.03201	19	0.00412
2	0.90689	8	0.25366	14	0.02162	20	0.00339
3	0.74048	9	0.14577	15	0.01685	21	0.00246
4	0.61685	10	0.09961	16	0.01470	22	0.00245
5	0.46525	11	0.06623	17	0.00881	23	0.00190
6	0.37294	12	0.04945	18	0.00616	24	0.00192

Sphere packing density in $\mathbb{R}^{n 5}$. Optimal density in blue color.

Applications in Computational Imaging

* Compressive video ${ }^{6,} f(x, y, t) \in \mathbb{R}^{3}$ and compressive spectral imaging ${ }^{7}$, $8 f(x, y, \lambda) \in \mathbb{R}^{3}$ are sampling problems in 3D.
* Compressive spectral video $f(x, y, \lambda, t) \in \mathbb{R}^{4}$ are sampling problems in 4D.

[^1]
What is a Lattice?

A typical lattice $\Lambda \in \mathbb{R}^{n}$ thus has the form

$$
\begin{equation*}
\mathbf{\Lambda}=\sum_{i=1}^{n} a_{i} v_{i} \mid a_{i} \in \mathbb{Z} \tag{1}
\end{equation*}
$$

* where $\mathbf{M}=\left[v_{1}, \ldots, v_{n}\right]$ is a unit cell or Generator Matrix basis in \mathbb{R}^{n} * The Gram Matrix $\mathbf{A}=\mathbf{M}^{T} \mathbf{M}$. Its entries (i, j) are given by $\left\langle v_{i}, v_{j}\right\rangle$.

\mathbf{M} is a unit cell and $\boldsymbol{\Lambda}$ is a lattice.

4D-Lattice: Generator Matrix and Gram Matrix

The unit cell in \mathbb{R}^{4} is \mathbf{M}_{4} lattice has generator matrix:

$$
\mathbf{M}_{4}=\left[\begin{array}{cccc}
-1 & -1 & 0 & 0 \\
1 & -1 & 0 & 0 \\
0 & 1 & -1 & 0 \\
0 & 0 & 1 & -1
\end{array}\right]
$$

The \mathbf{M}_{4} lattice has Gram Matrix:

$$
\mathbf{A}_{4}=\left[\begin{array}{cccc}
2 & 0 & -1 & 0 \\
0 & 2 & -1 & 0 \\
-1 & -1 & 2 & -1 \\
0 & 0 & -1 & 2
\end{array}\right]
$$

Compute the Density of a Lattice

Density of a lattice in a unit cell:

$$
\begin{equation*}
\frac{\operatorname{Vol}\left(B_{r}^{n}\right)}{\operatorname{Vol}\left(\mathbb{R}^{n} / \Lambda\right)}=\frac{\frac{\pi^{n / 2}}{(n / 2)!} r^{n}}{\sqrt{\operatorname{det}(\mathbf{A})}} \tag{2}
\end{equation*}
$$

* n -dimensional Sphere's volume:
$\operatorname{Vol}\left(B_{r}^{n}\right)=\frac{\pi^{n / 2}}{(n / 2)!} r^{n}$, where $(n / 2)!$ means $\Gamma(n / 2+1)$.
* n-dimensional Lattice volume:

$$
\operatorname{Vol}\left(\mathbb{R}^{n} / \Lambda\right)=\sqrt{\operatorname{det}(\Lambda)}=\sqrt{\operatorname{det}(\mathbf{A})}=\operatorname{det}(\mathbf{M})
$$

* n-dimensional radius:

Let $r=N(\Lambda)$ denote the minimal non-zero value of $\langle v, v\rangle$ among all $v \in \Lambda$.

n	1	2	3	4	5	6	7	8	24
Λ	A_{1}	A_{2}	A_{3}	D_{4}	D_{5}	E_{6}	E_{7}	E_{8}	Leech
due to		Lagrange	Gauss	Korkine- Zolotareff	Blichfeldt	Cohn- Kumar			

[^2]
Best Packing Known in $\mathbb{R}^{4}: \mathrm{M}_{4}$ Lattice and Upper Bound

In particular, for the \mathbf{M}_{4} lattice the SP density corresponds to

$$
\begin{equation*}
\frac{\operatorname{Vol}\left(B_{r}^{4}\right)}{\operatorname{Vol}\left(\mathbb{R}^{4} / \mathbf{M}_{4}\right)}=\frac{\frac{\pi^{2}}{2} r^{4}}{\sqrt{\operatorname{det}\left(\mathbf{A}_{4}\right)}}=0.61685 \ldots \tag{3}
\end{equation*}
$$

where $r_{\mathbf{M}_{4}}=\Phi\left(\mathbf{M}_{4}\right)=\frac{1}{\sqrt{2}}$ is the radius of the best known $4 D-S P$. The following section shows how to use 4D-SP for sampling spectral-video.

Discrete Model

The corresponding discrete model is as follows:

$$
\begin{equation*}
\mathbf{Y}=\sum_{t=0}^{T-1} \sum_{k=0}^{K-1} \mathcal{X}_{(:,:, k, t)} \odot \mathcal{C}_{(:,:, k, t)}+\boldsymbol{\Omega} \tag{4}
\end{equation*}
$$

where $\mathcal{X} \in \mathbb{R}^{M \times N \times K \times T}$ is the tensor that represents the 4-dimensional spectral-video datacube, and $\mathcal{C} \in \mathbb{R}^{M \times N \times K \times T}$ denotes the tensor of the $4 D$-CA.

measurement $\mathbf{Y}_{(:,:)}$

spectral-video $\mathcal{X}_{(:,:,:, t)}$

coded aperture $\mathcal{C}_{(:,:,:, t)}$

Multispectral Filter Array by Optimal Sphere Packing

The sampling of spectral-video can leverage from the following solution to $3 \mathrm{D} N^{2} \mathrm{QP}^{6}$ to place the spheres within a 3 D -container, \mathbf{B} as follows:

$$
\begin{equation*}
\mathbf{B}=((a \odot \mathbf{V}+b \odot \mathbf{H}) \quad \bmod K+1) \tag{5}
\end{equation*}
$$

[^3]
4D-Coded Aperture (CA) Sphere Packing Design

The positions of MSFA-OSP at the $t^{t h}$ frame are given by

$$
\begin{equation*}
\mathcal{G}_{(:,:, 0)}=\mathbf{A} \otimes \mathbf{B}, \tag{6}
\end{equation*}
$$

where \mathbf{A} is a matrix of all ones such that $\mathbf{A} \in\{1\}^{\alpha \times \beta}$, where $\alpha=\left\lfloor\frac{M}{K}\right\rfloor$, and $\beta=\left\lfloor\frac{N}{K}\right\rfloor$. The successive $t^{\text {th }}$ frame is computed by permuting the tensor $\mathcal{G}_{(:,, ;, t-1)}$

$$
\begin{equation*}
\mathcal{G}_{(:, ;, t)}=\left(\left(\mathcal{G}_{(:, ;, t-1)}+c\right) \quad \bmod K+1\right), \tag{7}
\end{equation*}
$$

where c is an integer constant that permutes $\mathcal{G}_{(:, ;, 0)}$ along time dimension. The multispectral pattern \mathcal{G} can be reorganized as CA

$$
\mathcal{C}_{(i, j, k, t)}= \begin{cases}1 & \text { if } k=\mathcal{G}_{(i, j, t)} \tag{8}\\ 0 & \text { if } k \neq \mathcal{G}_{(i, j, t)},\end{cases}
$$

Compute Spheres Distance

The resulting tensor $\mathcal{G} \in \mathbb{R}^{M \times N \times T}$ can be reorganized as
$\mathbf{p}_{l}=\left[i, j, \mathcal{G}_{(i, j, t)}, t\right]$, where $\mathbf{P}=\left[\mathbf{p}_{1}, \ldots \mathbf{p}_{l} \ldots \mathbf{p}_{V}\right] \in \mathbf{R}^{4 \times V}$, with indexes $i, j \in\{1, \ldots, K\}$ and $k \in\{1, \ldots, K\}$, where $V=K^{3}$ is the number of spheres. Thus, the distance function of V spheres is

$$
\begin{equation*}
d^{*}(V)=\max \left(\min _{1 \leq l_{1}<l_{2} \leq V}, D_{l_{1}, l_{2}}\right), \tag{9}
\end{equation*}
$$

Coded Aperture Design (Step 1)

First, we solve the temporal dimension

Coded Aperture Design (Step 2)

Then, we assign filters to each frame
OSP

1, $2,3,4,5,6,7,8,9,10,11,12,13,14, \ldots$

 414 471016163691525611 369 152581141477101516 8114147710181689121525 13103691215258114144740

 1525011444.7101210369 14471010163169 152 581116 691525811414471019153
 163. 69121525811414471013 $4^{58} 811414771013153$ 6. 912152 $101810369{ }^{15} 15258114147^{2}$

Reconstruction Algorithm

We start by expanding the measurement \mathbf{Y} into the datacube $\overline{\mathcal{X}}_{(:, ; k, t)}$ by using the CA $\mathcal{C}_{(:,, i, k, t)}$ such that

$$
\begin{equation*}
\overline{\mathcal{X}}_{(:,:, k, k)}=\mathcal{C}_{(:,:, k, t, t)} \odot \mathbf{Y} . \tag{10}
\end{equation*}
$$

spectral-video $\hat{\mathcal{X}}_{(:,:,:, t)}$

measurement $\mathbf{Y}_{(:,:)}$.

coded aperture $\mathcal{C}_{(:,:,:, t)}$.

The algorithm to recover the underlying datacube is Nearest Neighbor Interpolation (NNI) ${ }^{7}$, whose input is $\overline{\mathcal{X}}_{(:,,:,, t, t)}$ and its output is $\hat{\mathcal{X}}_{(:,, ;,, t)}$.

[^4]
Comparison of Image Quality Reconstruction

From a single snapshot \mathbf{Y}, we are able to recover a spectral-video with 16 frames and 16 bands.

Spectral-video Groundtruth
Spectral-video reconstruction $\hat{\mathcal{X}}$.

Conclusions

* We introduced a novel compressive spectral-video sensing approach that exploits optimal sphere packing.
* Our approach is able to accurately recover a spectral video from a single snapshot.
* The proposed approach obtains image reconstruction quality up to 31.42 [dB] of PSNR and 0.07 of SAM.

Spectral-video reconstruction $\hat{\mathcal{X}}_{(:,:,:, t)}$

measurement $\mathbf{Y}_{(:,:)}$.

coded aperture $\mathcal{C}_{(:,:,:, t)}$.

Future Work

* Compressive spectral depth $f(x, y, z, \lambda) \in \mathbb{R}^{4}$.
* Compressive spectral light field samples a function $f(x, y, z, \theta, \phi) \in \mathbb{R}^{5}$, is a problem in 5D.
* Sampling the plenoctic function involves sensing in 7D $f(x, y, z, \theta, \phi, \lambda, t) \in \mathbb{R}^{7}$ being (x, y, z) 3D-space dimensions, (λ) spectral dimension, (θ, ϕ) two angular dimensions, and (t) time.

n	density	n	density	n	density	n	density
1	1.00000	7	0.29529	13	0.03201	19	0.00412
2	0.90689	8	0.25366	14	0.02162	20	0.00339
3	0.74048	9	0.14577	15	0.01685	21	0.00246
4	0.61685	10	0.09961	16	0.01470	22	0.00245
5	0.46525	11	0.06623	17	0.00881	23	0.00190
6	0.37294	12	0.04945	18	0.00616	24	0.00192

Table 1: SP densities in \mathbb{R}^{n} with $1 \leq n \leq 24^{8}$.

[^5]
Funding

ANID ANILLOS ATE220022
ANID FONDECYT 1201081
ANID FONDECYT 1221883
ANID FONDECYT Postdoctorado 3230489.

Information contact

nelson.diaz@pucv.cl
https://nelson-diaz.com/

History of the Sphere Packing Problem

- 1611
- Johannes Kepler conjectured about the closest packing of equal spheres.
- He did not have a prove to the conjecture.

1998
Thomas Hales provides the formal proof of Kepler's conjecture.
But eliminating all posible irregular arregements is very difficult, and this is what made the Kepler conjecture so hard to prove.

- 1831
- Carl Friedrich Gauss proved that the highest packing fraction that can be achieved by any packing of equal sphere.
- He proved that the Kepler conjecture is true if the spheres have to be arranged in a regular lattice.

- 2017
- Maryna Viazovska solved sphere packing problem in 8-dimensions [1] (E_8 lattice). And in collaboration with others 24-dimensions [2] (Leech lattice).
- Winner of the Fields Medal 2022.

Theorem 1: No packing of congruent balls in Euclidean three space has density greater than that of the face-centered cubic packing, which corresponds to:

$$
\rho=\frac{\pi}{3 \sqrt{2}} \approx 0.7405
$$

Face-centered cubic structure

Face-centered Cubic Lattice

Definitions:

The generator matrix \mathbf{M} has v_{1}, \ldots, v_{n}.
The Gram matrix $\mathbf{A}=\mathbf{M}^{T} \mathbf{M}$. Its entries (i, j) are given by $\left\langle v_{i}, v_{j}\right\rangle$.
The face-centered cubic (FCC) lattice has generator matrix:

$$
\mathbf{M}=\left[\begin{array}{lll}
1 & 1 & 0 \\
1 & 0 & 1 \\
0 & 1 & 1
\end{array}\right]
$$

Example: The FCC has Gram matrix:

$$
\mathbf{A}=\left[\begin{array}{lll}
2 & 1 & 1 \\
1 & 2 & 1 \\
1 & 1 & 2
\end{array}\right]
$$

Face-Centered Cubic (FCC) Density

Face-centered cubic structure

Figure 3. A face-centered cubic solid has atoms at the corners and, as the name implies, at the centers of the faces of its whit cells.

Let $r=N\left(A_{3}\right)=\frac{\sqrt{2}}{2}$ and $n=3$

$$
\begin{equation*}
\frac{\operatorname{Vol}\left(B_{r}^{n}\right)}{\operatorname{Vol}\left(\mathbb{R}^{n} / A_{3}\right)}=\frac{\frac{\pi^{n / 2}}{(n / 2)!} r^{n}}{\sqrt{\operatorname{det}(\mathbf{A})}}=\frac{\frac{4 \pi r^{3}}{3}}{2}=0.74 \tag{11}
\end{equation*}
$$

FCC include aluminium, copper, gold and silver.

Face-Centered Cubic: Geometrical Calculations

Face-centered cubic structure

Figure 3. A face-centered cubic solid has atoms at the corners and, as the name impises, at the centers of the faces of its unit cells.

$$
\begin{align*}
V_{\text {rCC spheces }} & =\left(8 \cdot \frac{1}{8}+6 \cdot \frac{1}{2}\right) \frac{4 \pi}{3} r^{3} \tag{1}\\
& =\frac{16}{3} \pi r^{3} . \tag{z}
\end{align*}
$$

The diagonal of a face of the unit cell is $4 r$, so each side is of length $2 \sqrt{2} r$. The volume of the unit cell is therefore

$$
\begin{equation*}
V_{\text {FCCuatedil }}=(2 \sqrt{2} r)^{3}=16 \sqrt{2} r^{3}, \tag{3}
\end{equation*}
$$

giving a packing density $\eta=V_{\text {spteres }} / V_{\text {cell }}$ of

$$
\begin{align*}
\text { 解C } & =\frac{\pi}{3 \sqrt{2}} \tag{4}\\
& =0,74048 \ldots
\end{align*}
$$

[^0]: $1_{\text {Wang, Y. W., Reder, N. P., Kang, S., Glaser, A. K., and Liu, J. T., "Multiplexed Optical Imaging of Tumor-Directed Nanoparticles: a }}$ Review of Imaging Systems and Approaches. Nanotheranostics", Ivyspring International Publisher, 1(4), 2017.

[^1]: ${ }^{5}$ H. Cohn, "A Conceptual Breakthrough in Sphere Packing", Notices of the American Mathematical Society, Vol. 64, pp.102-115, 2017.
 ${ }^{6}$ E. Vera; F. Guzman; N. Diaz, "Shuffled Rolling Shutter for Snapshot Temporal Imaging", Opt. Express, Vol. 30, pp.887-901,2022.
 ${ }^{7}$ N. Diaz, A. Alvarado, P. Meza, F. Guzmán and E. Vera, "Multispectral Filter Array Design by Optimal Sphere Packing," in IEEE Transactions on Image Processing, vol. 32, pp. 3634-3649, 2023, doi: 10.1109/TIP.2023.3288414.
 ${ }^{8}$ A. Alvarado; N. Díaz; P. Meza; F. Guzman, E. Vera; , "Multispectral Mosaic Design using a Sphere Packing Filter Array", in imaging and Applied Optics Congress 2022.

[^2]: ${ }^{5}$ Conway, J. and Sloane, N.J.A, "Sphere Packings, Lattices and Groups", Springer New York, 2013.

[^3]: ${ }^{6}$ Allison, Lloyd and Yee, CN and McGaughey, M, "Three-Dimensional Queens Problems", Monash University, Department of Computer Science, 1989.

[^4]: 7 Amidror, Isaac, "Scattered Data Interpolation Methods for Electronic Imaging Systems: a Survey.", J. Electronic Imaging, Vol. 11, pp.157-176, 2002.

[^5]: 8^{H}. Cohn, "A Conceptual Breakthrough in Sphere Packing", Notices of the American Mathematical Society, Vol. 64, pp.102-115, 2017.

