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Traditional Approaches to Capture Spectral Images
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Spectral Video Applications
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What is Sphere Packing?

The sphere packing problem asks for the densest packing of Rn with

congruent balls. Equivalent to answer the question:

What is the largest fraction of Rn that can be covered by congruent balls

with disjoint interiors?
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Sphere Packing Density
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Sphere Packing Density in Rn and Applications

Sphere packing density in Rn 5. Optimal density in blue color.

Applications in Computational Imaging

* Compressive video6, f(x, y, t) ∈ R3 and compressive spectral

imaging7, 8 f(x, y, λ) ∈ R3 are sampling problems in 3D.

* Compressive spectral video f(x, y, λ, t) ∈ R4 are sampling problems

in 4D.
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What is a Lattice?

A typical lattice Λ ∈ Rn thus has the form

Λ =

n∑
i=1

aivi|ai ∈ Z (1)

* where M = [v1, . . . , vn] is a unit cell or Generator Matrix basis in Rn

* The Gram Matrix A = MTM. Its entries (i, j) are given by ⟨vi, vj⟩.

M is a unit cell and Λ is a lattice.
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4D-Lattice: Generator Matrix and Gram Matrix

The unit cell in R4 is M4 lattice has generator matrix:

M4 =


−1 −1 0 0

1 −1 0 0

0 1 −1 0

0 0 1 −1

 .

The M4 lattice has Gram Matrix:

A4 =


2 0 −1 0

0 2 −1 0

−1 −1 2 −1

0 0 −1 2

 .

M is a unit cell and Λ is a lattice.
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Compute the Density of a Lattice

Density of a lattice in a unit cell:

Vol(Bn
r )

Vol(Rn/Λ)
=

πn/2

(n/2)!r
n√

det(A)
(2)

* n-dimensional Sphere’s volume:

Vol(Bn
r ) =

πn/2

(n/2)!r
n, where (n/2)! means Γ(n/2 + 1).

* n-dimensional Lattice volume:

Vol(Rn/Λ) =
√
det(Λ) =

√
det(A) = det(M)

* n-dimensional radius:

Let r = N(Λ) denote the minimal non-zero value of ⟨v, v⟩ among all

v ∈ Λ.

5
Conway, J. and Sloane, N.J.A, ”Sphere Packings, Lattices and Groups”, Springer New York, 2013.
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Best Packing Known in R4: M4 Lattice and Upper Bound

In particular, for the M4 lattice the SP density corresponds to

Vol(B4
r )

Vol(R4/M4)
=

π2

2 r4√
det(A4)

= 0.61685 . . . , (3)

where rM4 = Φ(M4) =
1√
2
is the radius of the best known 4D-SP. The

following section shows how to use 4D-SP for sampling spectral-video.
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Discrete Model

The corresponding discrete model is as follows:

Y =

T−1∑
t=0

K−1∑
k=0

X(:,:,k,t) ⊙ C(:,:,k,t) +Ω, (4)

where X ∈ RM×N×K×T is the tensor that represents the 4-dimensional

spectral-video datacube, and C ∈ RM×N×K×T denotes the tensor of the

4D-CA.

measurement Y(:,:) spectral-video X(:,:,:,t) coded aperture C(:,:,:,t)
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Multispectral Filter Array by Optimal Sphere Packing

The sampling of spectral-video can leverage from the following solution

to 3DN2QP6 to place the spheres within a 3D-container, B as follows:

B = ((a⊙V + b⊙H) mod K + 1), (5)

6
Allison, Lloyd and Yee, CN and McGaughey, M, ”Three-Dimensional Queens Problems”, Monash University, Department of Computer

Science, 1989.
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4D-Coded Aperture (CA) Sphere Packing Design

The positions of MSFA-OSP at the tth frame are given by

G(:,:,0) = A⊗B, (6)

where A is a matrix of all ones such that A ∈ {1}α×β , where α = ⌊M
K ⌋,

and β = ⌊N
K ⌋. The successive tth frame is computed by permuting the

tensor G(:,:,t−1)

G(:,:,t) = ((G(:,:,t−1) + c) mod K + 1), (7)

where c is an integer constant that permutes G(:,:,0) along time

dimension. The multispectral pattern G can be reorganized as CA

C(i,j,k,t) =

{
1 if k = G(i,j,t)

0 if k ̸= G(i,j,t),
(8)

MSFA G(:,:,t) . coded aperture C(:,:,:,t) .
13



Compute Spheres Distance

The resulting tensor G ∈ RM×N×T can be reorganized as

pl = [i, j,G(i,j,t), t], where P = [p1, . . .pl . . .pV ] ∈ R4×V , with indexes

i, j ∈ {1, . . . ,K} and k ∈ {1, . . . ,K}, where V = K3 is the number of

spheres. Thus, the distance function of V spheres is

d∗(V ) = max( min
1≤l1<l2≤V

, D
l1
,l2
), (9)
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Coded Aperture Design (Step 1)

First, we solve the temporal dimension
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Coded Aperture Design (Step 2)

Then, we assign filters to each frame
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Reconstruction Algorithm

We start by expanding the measurement Y into the datacube X̄(:,:,k,t) by

using the CA C(:,:,k,t) such that

X̄(:,:,k,t) = C(:,:,k,t) ⊙Y. (10)

spectral-video X̂(:,:,:,t) . measurement Y(:,:) . coded aperture C(:,:,:,t) .

The algorithm to recover the underlying datacube is Nearest Neighbor

Interpolation (NNI)7, whose input is X̄(:,:,:,t) and its output is X̂(:,:,:,t).
7
Amidror, Isaac, ”Scattered Data Interpolation Methods for Electronic Imaging Systems: a Survey.”, J. Electronic Imaging, Vol. 11,

pp.157-176, 2002.
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Comparison of Image Quality Reconstruction

From a single snapshot Y, we are able to recover a spectral-video

with 16 frames and 16 bands.
Spectral-video Groundtruth

X ∈ R1220×775×16×16 .

Spectral-video reconstruction X̂ .

PSNR 31.42 dB, SSIM 0.94, SAM 0.07 18



Conclusions

* We introduced a novel compressive spectral-video sensing approach

that exploits optimal sphere packing.

* Our approach is able to accurately recover a spectral video from a

single snapshot.

* The proposed approach obtains image reconstruction quality up to

31.42 [dB] of PSNR and 0.07 of SAM.

Spectral-video reconstruction X̂(:,:,:,t) . measurement Y(:,:) . coded aperture C(:,:,:,t) .
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Future Work

* Compressive spectral depth f(x, y, z, λ) ∈ R4.

* Compressive spectral light field samples a function

f(x, y, z, θ, ϕ) ∈ R5, is a problem in 5D.

* Sampling the plenoctic function involves sensing in 7D

f(x, y, z, θ, ϕ, λ, t) ∈ R7 being (x, y, z) 3D-space dimensions, (λ)

spectral dimension, (θ, ϕ) two angular dimensions, and (t) time.

n density n density n density n density

1 1.00000 7 0.29529 13 0.03201 19 0.00412

2 0.90689 8 0.25366 14 0.02162 20 0.00339

3 0.74048 9 0.14577 15 0.01685 21 0.00246

4 0.61685 10 0.09961 16 0.01470 22 0.00245

5 0.46525 11 0.06623 17 0.00881 23 0.00190

6 0.37294 12 0.04945 18 0.00616 24 0.00192

Table 1: SP densities in Rn with 1 ≤ n ≤ 248.

8
H. Cohn, ”A Conceptual Breakthrough in Sphere Packing”, Notices of the American Mathematical Society, Vol. 64, pp.102-115, 2017. 20
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History of the Sphere Packing Problem
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Face-centered Cubic Lattice

Definitions:

The generator matrix M has v1, . . . , vn.

The Gram matrix A = MTM. Its entries (i, j) are given by ⟨vi, vj⟩.

The face-centered cubic (FCC) lattice has generator matrix:

M =

1 1 0

1 0 1

0 1 1


Example: The FCC has Gram matrix:

A =

2 1 1

1 2 1

1 1 2
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Face-Centered Cubic (FCC) Density

Let r = N(A3) =
√
2
2 and n = 3

Vol(Bn
r )

Vol(Rn/A3)
=

πn/2

(n/2)!r
n√

det(A)
=

4πr3

3

2
= 0.74 (11)

FCC include aluminium, copper, gold and silver.
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Face-Centered Cubic: Geometrical Calculations
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