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Abstract: This work presents a mathematical framework to design 4D-coded aperture
(CA)s for compressive snapshot spectral video (SV) exploiting 4D-sphere packing (SP).
Simulation results using state-of-the-art datasets and metrics show a promising performance
of the proposed approach to capture high-dimensional datacubes with limited sensing re-
sources. © 2023 The Author(s)
OCIS codes: 110.0110, 100.3020, 110.4234

1. Introduction
Sensing spectral video (SV) involves capturing a sequence of spectral datacubes over time, where each spectral
datacube hyperspectral images (HI) has two spatial dimensions and one spectral dimension. SV may find outstanding
applications in environmental sciences or medicine, tracking dynamic processes that have not been properly studied
using traditional spectral imaging devices.

Nevertheless, capturing SV is a challenging problem in the 4D-Euclidean space, where a conventional approach
to acquire the SV relies on scanning to complete the sequence of datacubes, giving up on temporal resolution.
Since scanning is a time-consuming process, compressive sensing (CS) has emerged as a sensing protocol to
capture a compressed version of the signal, where the underlying signal can be later recovered by solving an
ill-posed inverse problem. Traditionally, the encoding patterns known as CA are random realizations. In contrast,
novel approaches have shown outstanding performance using uniform patterns, and those approaches are known
as SP-driven methods [1, 2], inspired by early methods based on Fourier analysis [3]. SP is a problem in discrete
geometry that consists of packing congruent balls in a container such that only the spheres touch each other in a
tangential manner [4]. In detail, optimal SP in 1D is trivial because the points are separated by a corresponding
diameter whose resulting density is 𝜂1 ≈ 1, SP in 2D is circular packing with density 𝜂2 ≈ 0.90. 3D-SP or the
Kepler conjecture packs 3D spheres, the resulting density is 𝜂3 ≈ 0.74. Recently, 3D-SP has been successfully
applied to temporal sensing [1] and MSFA design [2]. Specifically, in SV the container is a hypercube with size
𝐾 ×𝐾 ×𝐾 ×𝐾 and the number of balls is 𝐿 = 𝐾3 because the number of spheres is proportional to the sensor’s
size and the number of frames. In this work, we introduce 4D-SP to design CA, and our approach exploits the
best-known 4D-sphere packing density 𝜂4 =

𝜋2

16 = 0.61 . . . in the 4D-Euclidean space of the D4 ∈ Z4×4 lattice.
2. Methods
The corresponding compressive measurement corresponds to the following discrete model:

Y =

𝑇−1∑︁
𝑡=0

𝐾−1∑︁
𝑘=0

X(:,:,𝑘,𝑡 ) ⊙ C(:,:,𝑘,𝑡 ) +𝛀, (1)

where 𝐾 is the number of bands and 𝑇 is the number of frames, X(:,:,𝑘,𝑡 ) ∈ R𝑀×𝑁 denotes the spectral temporal
scene at the 𝑘 th band, and the 𝑡th frame, the coded aperture is given by C(:,:,𝑘,𝑡 ) ∈ R𝑀×𝑁 , let ⊙ be the Hadamard
product, and 𝛀 ∈ R𝑀×𝑁 is the additive noise. In 4-dimensional Euclidean space the best-known packing density
corresponds to the following lattice D4 = [−1,−1,0,0;1,−1,0,0;0,1,−1,0;0,0,1,−1], and the corresponding Gram
matrix is A4 = D𝑇4 D4. The density of a 4D-lattice is given by

Vol(𝑆4
𝑟 )

Vol(R4/D4)
=

𝜋2

2 𝑟
4√︁

det(A4)
= 0.61 . . . (2)

where Vol(𝑆4
𝑟 ) = 𝜋2

2 𝑟
4 is the volume of the 4−dimensional sphere and Vol(R4/D4) =

√︁
det(A4) is the volume of

the lattice, the radius is 𝑟 = 1/
√

2.
2.1. Coding optimization strategy
The sampling of SV can leverage the following solution to 3D𝑁2QP [5] to place the spheres within a 3D-container
B as follows:

B(:,:,𝑡 ) = ((𝛼 ⊙V+ 𝛽⊙H+𝛾 ⊙ 𝑞𝑡 ) mod 𝐾 +1), (3)



where 𝐾 is the number of bands, the V and H are the vertical and horizontal translation matrices, respectively. The
vertical translation matrix is denoted by V = f𝑇 ⊗ q, where V ∈ N𝐾×𝐾 , f is a vector of all ones given by f ∈ {1}𝐾 ,
and q = [1, . . . ,𝐾]𝑇 where q ∈ N𝐾 , ⊗ is the Kronecker product, and ⊙ is the Hadamard product. The horizontal
translation matrix is H = V𝑇 , and matrix 1 ∈ N𝐾×𝐾 . The parameters, 𝛼, 𝛽, and 𝛾 ∈ N and must be selected such
that the minimum distance between spheres is maximized. The positions of the Multispectral Filter Array (MSFA)
at the 𝑡𝑡ℎ frame is given by G(:,:,𝑡 ) = A ⊗ B(:,:,𝑡 ) , where A is a matrix of all ones such that A ∈ {1}𝛿×𝜖 , where
𝛿 = ⌊𝑀

𝐾
⌋, and 𝜖 = ⌊ 𝑁

𝐾
⌋, the successive 𝑡th frame is computed using the tensor B(:,:,𝑡 ) . The multispectral pattern G

can be reorganized as CA

C(𝑖, 𝑗 ,𝑘,𝑡 ) =

{
1 if 𝑘 = G(𝑖, 𝑗 ,𝑡 )
0 if 𝑘 ≠ G(𝑖, 𝑗 ,𝑡 ) ,

(4)

the resulting tensor G ∈ R𝑀×𝑁×𝑇 can be reorganized as p𝑙 = [𝑖, 𝑗 ,G(𝑖, 𝑗 ,𝑡 ) , 𝑡], where P = [p1, . . .p𝑙 . . .p𝐿] ∈ R4×𝐿 ,
with indexes 𝑖, 𝑗 ∈ {1, . . . , 𝐾} and 𝑘 ∈ {1, . . . , 𝐾}, where 𝐿 = 𝐾3 is the number of spheres. Thus, the distance
function of 𝐿 spheres is 𝑑∗ (𝐿) = max(min1≤𝑙1<𝑙2≤𝐿 , 𝐷𝑙1 ,𝑙2

), where 𝐷𝑙1 ,𝑙2 = ∥p𝑙1 −p𝑙2 ∥2
2 is the all pairwise distance

matrix, 𝑙1, 𝑙2 ∈ {0, . . . , 𝐿−1} index the 𝑙1th and 𝑙2th spheres.
3. Results
To prove the performance of our approach, we use a state-of-the-art SV dataset [6]. The spatial resolution is
256×256, the spectral resolution is 8 bands and the number of frames is 8. Moreover, state-of-the-art metrics are
used. To evaluate the spatial fidelity, the peak-signal-to-noise ratio (PSNR) and structural similarity index (SSIM)
were used; to test the spectral accuracy, the spectral angle mapper (SAM) was used. The reconstruction algorithm is
interpolation. Fig. 1 depicts the groundtruth and reconstruction of frames 1st, 3rd, 5th, and 7th, whose corresponding
PSNR is 25.5807 [dB], SSIM is 0.69274, and SAM is 0.40898.

Fig. 1: Compressive measurement and comparison of image reconstruction quality. (a) Compressive measurement,
(b) the first row shows 4 groundtruth frames. The second row depicts the recovered image using interpolation.

4. Conclusions
This paper introduces 4D-CA to reconstruct the SV. Our approach leverages the best-known 4D-packing density of
4D congruent SP to design the spectral filter for different instants of time. Future work will explore reconstruction
algorithms driven by deep learning.
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