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Abstract: We propose an optimal distribution of spectral filters in a multispectral filter
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1. Introduction
The color filter array (CFA) sample spatial-spectral signals into a two dimensional sensor array, acquiring
a grayscale mosaic projection in order to recover a color image through demosaicking algorithms [1].The
multispectral filter array (MSFA) extends the CFA three-band base (tri-chromatic) to several spectral bands [2],
leading to a trade-off between spatial and spectral resolution.

An important benefit of an well-designed MSFA would be improve the spectral resolution without heavy
losses in the spatial resolution. This can be achieved with the help of demosaicking algorithms, where the
simplest case would be just to apply independent spatial interpolation [2] per-band. Nonetheless, demosaicking
algorithms can take better advantage of the prior-knowledge of the image statistics and the existent spatio-spectral
correlations to deliver state-of-the-art reconstructions [3]. However, demosaicking for the MSFA deals with two
main challenges. Firstly, dealing with more spectral bands comes with a higher computational burden during the
rendering of the spatial-spectral image. Secondly, most demosaicking algorithms assume fixed pattern spectral
filters. Therefore, we propose a novel MSFA pattern with an uniform distribution of optical filters, following a
sphere packing optimization strategy recently used for snapshot temporal imaging [4]. Our approach maximizes
the minimal spectral distance between filters, which reduce the aliasing when demosaicking the MSFA leading to
improved reconstructions, while facilitating the scalability of the demosaicking algorithms.

2. Methods
The acquisition of the grayscale mosaic compressive multispectral projection of N f spectral bands is

Y =

N f

∑
l=1

Xl�Cl +Ω (1)

where Xl ∈RNx×Ny is the lth spectral band with Nx×Ny number of pixels, Cl ∈RNx×Ny denote the positions of the
filters at lth wavelength, � is the Hadamard product, and Ω is the Gaussian noise. The discrete model is similar
to the sensing model of the CACTI presented in [5]. The proposed design for the MSFA is equivalent to packing
spheres in a cubic container [6]. One of the optimal solutions to the 3DN2

x Queens Problem associated to the
MSFA sensing is:

G = (a� I+b�J) mod N f +1, (2)
where I = xT ⊗ y such that I ∈ RNx×Nx , being x a vector of all ones such as x ∈ RNx , and y = [1, . . . ,Nx]

T such
as y ∈ RNx , � denotes the Hadamard product, and ⊗ represents the Kronecker product, J = IT , 1 ∈ RNx×Ny

i ∈ {1, . . . ,Nx}, j ∈ {1, . . . ,Ny}. The resulting positions for the MSFA are:

Ci, j,l =

{
1 if l = Gi, j

0 if l 6= Gi, j,

where l ∈ {1, . . . ,N f }. Thus, the distance between a set of n spheres is given by

d∗(n) = max( min
1≤u<v≤n

‖pu−pv‖2), (3)

where pu and pv are the centers of the uth and vth sphere, respectively [4].



3. Results
To compare the performace of the proposed MSFA design, we used the CAVE dataset [7], with datacubes of Nx =
Ny = 256 and N f = 16 for our experiment. The evaluation includes a comparison of the proposed mosaic filter with
two state-of-the-art MSFAs, the BTES [2] and the IMEC [8]. Fig. 1 compares the groundtruth RGB representation
and the MSFA reconstructions. Despite generating blur, by solely using interpolation we can observe the benefits
of our MSFA design in Fig. 1(e), where it is clear that both BTES and IMEC show artifacts and color distortions
due to aliasing in high-frequency areas. These artifacts are even more clear in the red, blue, and green crops for
IMEC Fig. 1(c) and BTES Fig. 1(d).

(a) (b) Groundtruth (c) IMEC16 (d) BTES (e) Our Method

Fig. 1: MSFA reconstruction comparison using interpolation. (a) RGB Grountruth; (b) cropped groundtruth; (c)
IMEC16 recosntruction; (d) BTES reconstruction; Our MSFA reconstruction.

Furthermore, we adapted a novel neural network [9] developed for compressive hiperspecrtral imaging to our
MSFA demosaicking problem. This network consists of an autoencoder with a reversible neural network in the
middle section and implements 3D-Convolution blocks as layers. The network is trained to demosaic the mul-
tispectral datacubes from the different MSFAs using 70 datacubes between of the CAVE dataset [7] and Toky-
oTech [3], using also data augmentation procedures. The average PSNRs achieved by the MSFAs are depicted in
Table 1, where the advantages of our novel MSFA for enhanced reconstructions are even more evident.

Random IMEC BTES Our Method

Groundtruth 1a (Interpolation) 24.09[dB] 24.02[dB] 24.09[dB] 24.55[dB]
Groundtruth (Neural Network Demosaicking) 26.55[dB] 25.84[dB] 27.95[dB] 28.90[dB]

Table 1: PSNR for preliminary results of Neural Network and Interpolation.
4. Conclusions
We designed a novel MSFA design procedure by using a sphere packing filter approach improve the spatio-spectral
sampling for multispectral images. Results show promising results with interpolation which are enhanced when
using advanced demosaicking algorithms. We are working on the experimental demonstration of the superiority
of our new MSFAs.
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