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Abstract

Single-pixel camera (SPC) captures encoded projections of the scene in a unique detector
such that the number of compressive projections is lower than the size of the image. Tradi-
tionally, classification is not performed in the compressive domain because it is necessary to
recover the underlying image before to classification. Based on the success of Deep learning
(DL) in classification approaches, this paper proposes to classify images using compressive
measurements of SPC. Furthermore, the proposed DL approach designs the binary sensing
matrix in the SPC to improve the classification accuracy. In particular, a whole neural
network is trained to learn the SPC sensing matrix, in the first layer, and extracts features
from the single-pixel compressive measurements. The proposed approach overcomes two
approaches of the state-of-the-art in terms of classification accuracy.

Introduction

Single-pixel camera (SPC) encodes the scene x ∈ RMN using K �MN binary-coded
aperture, obtaining y ∈ RK compressive projections of the scene, resulting in a hard-
ware compression system [1]. The SPC can be represented as a linear system y =Φx,
where each row of the sensing matrix Φ corresponds to a rearrange of binary-coded
aperture in a given snapshot. Traditionally, to classify images using compressive mea-
surements of the SPC it is necessary to reconstruct the underlying scene solving a
relative expensive optimization problem. However, there are approaches in compres-
sive sensing that perform classification in the compressive domain, for instance, using
Support Vector Machines (SVM) [2, 3] or sparse subspace clustering [4].

Recently, deep learning (DL) has been introduced as an approach to classify im-
ages, yielding high accuracy [5]. In particular, DL has been introduced to classify com-
pressed measurements, extracting deep features from a re-projected image x̃ = ΦTy
where x̃ has the image size, so any well known convolutional neural network can be
used to classify image [6]. Indeed, [7] proposed an End-to-End network to train the
sensing matrix Φ and the re-projected matrix ΦT using two fully-connected layers in
the first layers. However, This method requires a large number of parameters to op-
timize, and it does not take into account the physical constraints imposed by the real
architectures as SPC. Therefore, this paper proposes a DL compressive classification
approach for single-pixel compressive measurements. The procedure is summarized



in two parts of a whole neural network. The first part designs the binary sensing
matrix, which represents the coded aperture in the SPC. The second part comprises
the layers of a neural network that extracts deep features without re-projected mea-
surements, which reduces training time [8]. This work is organized as follows. Section
1 describes the SPC acquisition model. Section 2 defines the coded aperture design
and describes the proposed DL classification approach denominated binary-NoP-Net.
Section 3 shows the results that compare the proposed approach against methods of
the state-of-the-art such as Random+CNN [6], and End-to-End [7]. Conclusions are
reported in section 4.

1 SPC Compressive acquisition model

The single-pixel camera (SPC) is a compressive imager that encodes the scene using a
binary coded aperture which block/unblock some pixel in the image, then the encoded
field is concentrated in a single sensor. The compressive measurement y ∈ RK can
be expressed mathematically as

y = Φx + ω, (1)

where Φ ∈ {−1, 1}K×MN denotes the binary sensing matrix, where each row rep-
resents the binary coded aperture, x ∈ RMN represents the underlying image and
ω ∈ RK is the additive noise. Usually, the reconstruction of the underlying scene is
achieved assuming that the image is sparse in a given domain; therefore, it can be
obtained by solving the following optimization problem

x̂ = Ψ(argmin
α
‖y −ΦΨα‖22 + τ‖α‖1), (2)

where the underlying image x = Ψα is represented as the linear combination between
the representation basis Ψ and the sparse coefficients α. ‖.‖22, and ‖.‖1 denote the
squared `2 norm, and the `1 norm, respectively. τ corresponds to a regularization
parameter. It is essential to highlight that the distribution of the coded aperture
determines the quality of the measurements [9], and a time-consuming iterative algo-
rithm is required to solve (2).

2 Classification and coded aperture design using deep learning

The proposed approach introduces a supervised classifier based on deep learning (DL),
that classifies images in the compressed domain, avoiding the reconstruction proce-
dure of solving (2). Figure 1 depicts the proposed coupled neural network. The
approach is divided into two stages. First, the training stage, where the coded aper-
tures and the parameters of the classification network are learned. Second, the test-
ing stage, where the compressed measurements are captured and classified with the
learned parameters.



Figure 1: Training and testing stages for a coupled neural network, using single-pixel compressive

measurements. The training is divided into two sub-stages, first learning the sensing matrix and

second learn the parameter of the non-linear classifier. In the testing, the learned coded apertures

are employed to obtain new compressive measurements. Those measurements are classified using

the trained classifier network.

Training stage

The training stage is composed of the coupled neural network divided into two blocks.
The first block is a binary fully connected layer which learns the implementable coded
apertures; for this purpose, a penalization term Ebinary is used to impose binary values.
The second block is a non-linear classification network that learns the classification
parameters of the network using a classification cost function Elearning. The coupled
neural network is trained as a whole using a set of L test images {x`}L`=1, and the
labels of the training images {d`}L`=1 to compute the sensing matrix Φ and the pa-
rameters of the classifier θ.

Deep learning classification approach

The following corresponds to join the minimization cost function and learning problem
penalized by binary sensing matrix regularization

argmin
Φ,θ

{
Elearning + µEbinary

}
, (3)

where µ denotes the regularization parameters that balance the trade-off between the
joint learning problem, and penalization term.



Coded Aperture Design
The binary entries of the sensing matrix, which corresponds to the coded aperture,
are learned introducing a penalty term, given by

Ebinary =
K∑
k=1

MN∑
n=1

(1 + Φk,n)2(1−Φk,n)2, (4)

notice that the penalization term promotes a sensing matrix with values −1 or 1,
which is implementable in a real experimental setup [10].

Classification Strategy
The second block of the training stage corresponds to the classification network. In
detail, given the training data, the following loss function L (Mθ(Φx`),d`), that
measure the error between the true label and the estimated by the inference operator
where Mθ(.) corresponds to the non-linear classification network is given by

Elearning =
1

L

L∑
`=1

L(Mθ(f1(Φx` + b1)),d`), (5)

where L(z`,d`) = − [d` log(z`) + (1− d`) log(1− z`))] is the categorical cross entropy
loss function, with z` as the result of the classification operator for the `-th image,
i.e., z` =Mθ(f1(Φx` + b1)). Therefore, the whole training method is summarized in
the following loss function penalized by the term that promotes binary sensing matrix

{Φ,θ} = argmin
Φ,θ

1

L

L∑
`=1

L(Mθ(f1(Φx`+b1)),d`)+µ
K∑
k=1

MN∑
n=1

(1+Φk,n)2(1−Φk,n)2. (6)

With the structure of the classification operator, the eq. (6) can be solved using of
the-state-of-art methods, including stochastic gradient descent (sgd) [11], min-batch
gradient descent, gradient descent with Momentum [12], or Adam [13]. It is important
to highlight that, after solving (6), the learned values of Φ are designed specifically for
the classification task and are binary values which can be used in the coded aperture
of the SPC.

Testing stage

In the testing stage, there are two sub-stages. The first is a hardware sub-stage where
each row of the sensing matrix Φ, learned in the previous training stage, are used
as a coded aperture to acquire new compressive measurements g = Φx. Then, the
same learned network, starting from the second layer, can be used as a classification
operator Mθ(.), whose output is given by

z =Mθ(f1( g︸︷︷︸
Φx

+b1)). (7)



Configuration of the classification network

The proposed classification network Mθ(·) extracts deep features from the compres-
sive measurements. Unlike [6, 7], the proposed network does not require a re-projected
matrix to maintain the size of the original image. For that reason, the proposed
method employs a smaller fully connected layer followed by an element-wise acti-
vation function like ReLU or a sigmoid [14], followed by convolutional layers, and
max-pooling layers used to reduce dimensionality, finalizing with fully connected lay-
ers with soft-max function. The advantage of this approach is that it requires fewer
parameters, which minimize overfitting risk [15] compared with [6, 7].

3 Results

This section analyzes the performance of the proposed coupled convolutional neural
network called Binary-NoP-Net to classify images using SPC compressive measure-
ments. It is compared against state-of-the-art DL classification models, including
Random+CNN [6], and End-to-End [7]. In particular, Random+CNN uses random
sensing matrix Φ to obtain the compressive measurements and then uses a CNN to
extract features from the re-projected measurements ΦTy. On the other hand, the
End-to-End method learns a sensing matrix Φ and also the re-projection matrix using
two fully connected layers. It is worth noting that, End-to-End is not implementable
in the SPC because the entries of the sensing matrix could converge to real values;
however, it is included for comparison with the other approaches.

Simulation scenario

Two datasets are used in this paper to test the performance of the proposed method
against the two approaches of the state-of-the-art. The first dataset is MNIST1,
and the second dataset is CIFAR-102 [16]. Both datasets have 60,000 images. Each
dataset is divided into 10,000 training images, and 50,000 testing images. The MNIST
dataset corresponds to images of digits from 0 to 9, with a size of 28× 28 pixels. The
CIFAR-10 dataset is composed of RGB images with a size of 32× 32. The results for
each database are averaged in 5 trial runs. In the testing step, the learned sensing
matrix is utilized to acquire compressive measurements that were contaminated with
additive noise corresponding to 30 dB signal-to-noise ratio (SNR). The three methods
are trained with Adam algorithm [13]. The number of epochs is 100, and the learning
rate is 0.001. In the proposed method, the hyper-parameter µ, which balances the
trade-off between the joint learning problem, and the penalization term that promotes
binary entries in the sensing matrix corresponds to 0.01. All parameters were obtained
using cross-validation.
The simulations were computed using Matlab 2018a on an Intel Xeon E5-2697 2.6
GHz CPU with 192 GB RAM, coupled with an Nvidia Quadro K6000 12 GB GPU.

1Available at http://yann.lecun.com/exdb/mnist/
2Available at https://www.cs.toronto.edu/ kriz /cifar.html



MNIST database

Figure 2(a) depicts the configuration of the coupled neural network Binary-NoP-Net
for MNIST dataset. The proposed method uses a binary layer succeed by three
fully connected layers using ReLU as non-linear operator, and a 10-class softmax
classifier, as is shown in Fig. 2(a). The Random+CNN and the End-to-End use a
modification of LeNet-5 model [17], which is shown in Fig. 2(b). Notice that all
network configurations have the same three final layers for this data set.

The average classification accuracy for the MNIST dataset is depicted in Table
1. The sensing ratios in this experiment correspond to γ = {0.01, 0.05, 0.01, 0.25}
or equivalently to number of snapshots K = [8, 39, 78, 196]. The results in boldface
denote the best approach, and the underlined results represent the second-best result.
The accuracy of the proposed approach increases as the sensing ratio increases. In
particular, the proposed method obtains better result for low sensing ratios 1% or 5%
compared with the implementable Random+CNN approach. One of the advantages
of Binary-NoP-Net is the reduction in the number of parameters of the network to be
trained. Specifically, Table 2 depicts the training time per epochs using the MNIST
database and three methods. Notice that the proposed approach is faster in terms of
computational time than the methods of the-state-of-the-art because the reduction
in the number of layers, decrements the number of parameters.

Table 1: Average classification accuracy for different sensing ratios with the MNIST data
set, and for the three methods.

Sensing Shots Data Methods
Ratio (γ) (L) set Random+CNN End-to-End Binary-NoP-Net

0.25 196 Training 99.99 % 99.99 % 99.99 %
Testing 98.32 ± 0.06 % 98.48 ± 0.04 % 97.37 ± 0.13 %

0.1 78 Training 99.95% 99.99 % 99.24 %
Testing 97.01 ± 0.14 % 98.29 ± 0.02 % 95.88 ± 0.09%

0.05 39 Training 99.99 % 98.78% 98.97 %
Testing 94.82 ± 0.09 % 98.09 ± 0.04 % 94.95 ± 0.14 %

0.01 8 Training 89.98% 97.19 % 90.63 %
Testing 58.94 ± 0.20 % 95.18 ± 0.04 % 87.75 ± 0.35 %

Table 2: Training time in seconds per epoch with the MNIST data set, and for the three
methods.

Sensing Shots Methods
Ratio (γ) (L) Random+CNN End-to-End Binary-NoP-Net

0.25 196 6.67 7.87 4.33
0.1 78 6.60 7.80 4.29
0.05 39 6.55 7.68 4.25
0.01 8 6.53 7.67 4.20
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Figure 2: Layer description of the three neural network methods used with MNIST and CIFAR-10

datasets, (a) and (c) show the layer description of Binary-NoP-Net. (b) and (d) the layer configura-

tion of Random+CNN and End-to-End. Inside the red-dashed rectangle is the layer configuration

for Random+CNN whose input is x̂ = ΦTy (b) uses MNIST and (d) utilizes CIFAR-10. Inside

the green-solid rectangle is the layer configuration for End-to-End (b) uses MNIST and (d) utilizes

CIFAR-10.

CIFAR-10 database

Figure 2(c) shows the setup of the Binary-NoP-Net, which corresponds to the pro-
posed coupled neural network for CIFAR-10 dataset. The classification block of Ran-
dom+CNN and the End-to-End are a modification of AlexNet [5], which is depicted
in Figure 2(d). Due to the ramification of the network and the dataset, the weights
of layers 3 to 11 were initialized separately of the first two layers with learned weights
from the training stage, using 50 epochs, and the same hyper-parameters used in
MNIST dataset. The input of the binary-NoP-Net is the single-pixel compressive
measurements. The method extracts the features using a small, fully connected layer,
and the output of the last layer is rearranged into a 3D structure, followed by a con-
volutional layer, as is shown in Fig. 2(c). Notice that all network configurations have
the same seven final layers.

The overall accuracy of the proposed Binary-NoP-Net is compared against meth-
ods of the-state-of-the-art Random+CNN and End-to-End in Table. 3. The same



sensing ratios γ = [0.01, 0.05, 0.01, 0.25] of the preceding experiment were utilized
with the CIFAR-10 dataset, which are equivalent to number of snapshots K =
[8, 39, 78, 196]. The results in boldface denote the best approach, and the under-
lined results represent the second-best result. Notice that for the Binary-NoP-Net
the higher the sensing ratios, the higher the classification accuracy. The proposed
approach overcomes the implementable approach Ramdom+CNN in all the sensing
ratio and the End-to-End for high sensing ration 0.1 and 0.25. Table 4 shows the
training time in seconds using the database CIFAR-10. Notice that the proposed
approach Binary-NoP-Net requires less computational time than the-state-of-the-art
approaches.

Table 3: Average classification accuracy for different sensing ratios with the CIFAR-10 data
set, and for the three methods.

Sensing Shots Data Methods
Ratio (γ) (L) set Random+CNN End-to-End Binary-NoP-Net

0.25 768 Training 99.82% 100 % 98.24 %
Testing 45.12 ± 0.24 % 57.12 ± 0.40 % 63.45 ± 2.41 %

0.1 307 Training 92.55% 89.12 % 88.15 %
Testing 40.84 ± 0.52 % 55.59 ± 0.55 % 58.14 ± 1.11 %

0.05 154 Training 89.78% 91.89 % 85.47 %
Testing 34.25 ± 0.54 % 54.34 ± 0.73 % 50.94 ± 0.98 %

0.01 31 Training 88.54% 90.64 % 82.14 %
Testing 30.47 ± 0.54 % 50.89 ± 0.52 % 40.59 ± 3.05 %

Table 4: Training time in seconds per epoch with the CIFAR data set, and for the three
methods.

Sensing Shots Methods
Ratio (γ) (L) Random+CNN End-to-End Binary-NoP-Net

0.25 196 158.5 190.2 82.6
0.1 78 157.5 165.2 80
0.05 39 156.8 158.3 78.9
0.01 8 156.3 157.2 78.2

4 Conclusions

The coupled neural network Binary-NoP-Net was introduced, which learns concur-
rently the sensing matrix and the parameters of the non-linear classifier using the
compressive measurements of the SPC. Then, the proposed approach obtains the
compressive measurements of SPC using the learned sensing matrix, and the inference
task is performed using the trained classification network. The proposed approach
was compared with the-state-of-the-art methods Random+CNN, and End-to-End.
Two datasets were used to evaluate the proposed approach MNIST and CIFAR-10.
The proposed approach shows that when the sensing ratio increases, the classification
increases using both datasets. The Binary-NoP-Net is overcome by the End-to-End



approach using the MNIST. However, the latter is not straightforward implementable
into the SPC due to real valued entries of the sensing matrix. With the CIFAR-10
dataset, the proposed approach overcomes the-state-of-the-art approaches when the
sensing ratio is increased. In terms of computational time, the proposed method is
approximately twice faster than Random+CNN and End-to-End. Another advantage
of the proposed method is that it requires less number of the parameter in the CNN
model.
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