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Abstract: This paper presents a gradient thresholding algorithm (GTA) to adaptively
compute the subsequent colored coded apertures to be used in a compressive spectral imaging
sensor yielding to a reconstructed spectral datacube with high image quality.

OCIS codes: 110.4234 Multispectral and hyperspectral imaging, 110.1085 Adaptive imaging, 170.1630 Coded aper-
ture imaging

1. Introduction
Compressive spectral imaging (CSI) is applied in food safety [1], target detection [2], and classification [3]; it captures
projections of an underlying scene, which are the input of recovering algorithms that take advantage of sparsity and
high spatial correlation to attain the datacube. Particularly, coded aperture snapshot spectral imaging (CASSI) imple-
ments the concepts of CSI [4]. The light in CASSI is spatially modulated by a coded aperture and spectrally by a prism.
The light is then integrated into the Focal Plane Array (FPA) forming the compressive measurements. Traditionally,
CASSI uses a block-unblock coded aperture which blocks or transmits the spectrum. In contrast, colored-patterned
CASSI system (C-CASSI) uses a colored filter array as coded aperture [5]. The advantages of C-CASSI is that the
entailed spatio-spectral modulation permits a more flexible coding design. Previous work on C-CASSI has only fo-
cused on non-adaptive measurements [5] rather than adaptive measurements. Adaptive means that for K snapshots the
compressive measurements y0, y1, · · · ,yK−1 are sequentially selected and the choice of y`+1 depends on the previously
gathered measurements y`. The fundamental characteristic of adaptive measurements is that they are more outstand-
ingly robust to Gaussian noise than traditional non-adaptive measurements. This work presents a gradient thresholding
algorithm (GTA) to adaptively compute colored filter array which will improve the quality of image reconstruction.
Results show that the proposed adaptive C-CASSI outperforms the non-adaptive random C-CASSI in up to 2 dBs in
terms of PSNR.

2. Adaptive colored filter array
The `th discretized compressive measurement in C-CASSI can be written as Y`

i j = ∑
L−1
k=0 Fi( j−k)kT`

i( j−k)k +ωi j, where

Y`
i j is the intensity in the (i, j)th position, i = 0, · · · ,N− 1 and j = 0, · · · ,N +L− 1, F ∈ RN×N×L is the underlying

scene, where N and L are the spatial resolution and spectral resolution, respectively, and T ∈ RN×N×L is a binary
three dimensional array modeling the colored filters array, and ωi, j is the Gaussian noise in the (i, j)th position.
The compressive measurements in C-CASSI can be expressed in matrix form as y` = A`f+ωωω , where A` stands for
the `th sensing matrix, f denotes the vectorization of the underlying datacube F, and ωωω is the Gaussian noise. The
vectorization of the matrix F is given by (fk)

`
j = FFF`

( j−rN)rk, for j = 0, · · · ,N2−1, k = 0, · · · ,L−1, r = b j/Nc, where `
is the shot index `= 0, · · · ,K−1, and K is the number of snapshots. Equation y` = A`f+ωωω can be rewritten as y = Af
where y = [(y0)T, · · · ,(yK−1)T]T and A = [(A0)T , · · · ,(AK−1)T ]T . Alternatively, f can be expressed as f = ΨΨΨθθθ where
ΨΨΨ is an appropriate representation basis and θθθ is the vector of sparse coefficients. As a result, f can be recovered
solving the convex optimization problem f̂ = ΨΨΨ(argminθθθ ‖y−AΨΨΨθθθ‖2 + τ‖θθθ‖1). Traditionally, the design of A is
non-adaptive [5]. This paper presents a gradient thresholding algorithm (GTA) to adaptively compute A in C-CASSI.
Particularly, the proposed design increases the transmittance in some areas of A and decreases in others. Transmittance
is the quantity of light transmitted in the system through each filter in C-CASSI. Let Ai j denotes each entry of A, if
Ai j = 1 the light gets into the system, and, if Ai j = 0 the light is filtered out from reaching the Focal Plane Array (FPA).

Figure 1 shows an sketch of the proposed adaptive C-CASSI, when two snapshots are captured. Each shot codes
the light spatially and modulates spectrally the coded light. Subsequently, the energy is added in the FPA. The aim
of adaptive C-CASSI is to increase the quality of image reconstruction improving the tolerance of the system to
Gaussian noise. In order to shape the next projection of the adaptive C-CASSI, GTA algorithm 1 was developed.
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Specifically, GTA exploits a low-resolution datacube f̂L which provides prior information about the underlying scene
f. This method has practical applications since f̂L can be obtained with low computational cost. In detail, algorithm
1 receives as an input the first compressive measurement y0, the initial sensing matrix A0, and the gradient matrix
B. Then in step 3, it computes a low resolution datacube f̂L. Formally, fL = Df, where D denotes the decimation
matrix and f identifies the underlying scene. Solving the optimization problem f̂L←ΨΨΨL(argminθθθ L

‖y−ALΨΨΨLθθθ L‖2
2 +

τ‖θθθ L‖1 +λ‖(C− I)(ΨΨΨLθθθ L)‖2
2) s.t ‖f̂−Pf̂L‖2

2< ε it obtains the low resolution reconstruction, where AL denotes the
sensing matrix, ΨΨΨL is the representation basis, and θθθ L is the vectorization of a sparse vector for the low resolution
reconstruction, I is the identity matrix, C is a Gaussian filter to promote smoothness, τ , λ are regularization constants
and P(.) is a interpolator of a low resolution datacube. In step 4, the interpolation of a low resolution datacube f̂L is
computed attaining a high-resolution datacube f̂H . In step 5, the gradient computation of the high-resolution datacube
is given by g← B2 f̂H , where g ∈ RN2·L, and B ∈ RN2·L×N2·L is the gradient matrix defined by:

B =



−1 1 0 · · · 0 0 0
−0.5 0 0.5 · · · 0 0 0

0 −0.5 0 · · · 0 0 0
...

...
...

. . .
...

...
...

0 0 0
. . . 0 0.5 0

0 0 0 · · · −0.5 0 0.5
0 0 0 · · · 0 −1 1


⊗diag(v), (1)

where v is an all ones vector and diag(v) ∈ RN2×N2
is a diagonal matrix whose entries are the elements of v. Then in

step 6, the thresholding of the gradient is performed according to the logical operation q← (g � 0), where � is the
element-wise inequality, g is the computed gradient, and 0 is an all zero vector. The thresholding (g � 0) splits the
spectral signature in concave upward and concave downward. In general, the purpose of the thresholding is to sample
at higher transmittance the concave downward regions than the concave upward regions. In step 7, the adaptive colored
filter array is computed according to t← q� td +(1−q)� tu, where t ∈RN2·L, td ∈RN2·L has a Bernoulli distribution
td ∼ Ber(d = 2/(`+ 1)) and tu ∈ RN2·L has a Bernoulli distribution tu ∼ Ber(u = 1/`). The vector td increases the
transmittance in concave downward spectral regions and tu decreases the transmittance in concave upward spectral
regions. The resulting designed colored filter array t, senses with higher transmittance the concave downward spectral
regions, than the concave upward spectral regions. For that reason the transmittance d is larger than u. In step 10,
the vector t`j is rearranged at the 2D kth plane according to (t`k)l ← t`j . Afterwards, in step 13, the colored filter array

t` is stacked in the sensing matrix A` according to (ai) j ← (t`i
k j
)i−`iv−k jN , where i = 0, . . . ,KV − 1, V = N + L− 1,

k j = b j/N2c, `i = bi/Vc, `i ∈ {0, . . . ,K − 1}, and N′ = N2 −N. In step 16, the adaptive snapshot is captured as
y`+1← A`+1f. In step 17, the output of algorithm 1 is the approximation f̂ to f.
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Figure 1: Sketch of adaptive C-CASSI. The figure depicts two snapshots of C-CASSI. The second colored filtered is
designed by the GTA, which input is the interpolated datacube PF̂L. The dashed line box denotes the proposed adaptive
computational process.

3. Experiments and results
To assess the capabilities of the adaptive C-CASSI, a comparison with non-adaptive C-CASSI is performed. A critical
parameter in the simulation is the transmittance. The transmittance in non-adaptive C-CASSI is traditionally set to
0.5. In adaptive C-CASSI the transmittance is d = 2/(`+ 1) in the concave downward spectral regions, and u = 1/`
in the concave upward regions. The interpolator P is a bilinear interpolator. The reconstruction algorithm used is the
Gradient Projection for Sparse Reconstruction (GPSR) algorithm [6]. The evaluated spectral image has N = 512 pixels
of spatial resolution and L = 12 spectral bands. Figure 2a shows the original first spectral band, the reconstruction of
non-adaptive, and the adaptive C-CASSI. The figure 2b shows the quality of image reconstruction against the number
of snapshots with Gaussian noise with SNR of 10 dB, 20 dB and 30 dB. The dashed line represents the non-adaptive C-



JTu5A.4.pdf Imaging and Applied Optics 2017 (3D, AIO, COSI, IS,
MATH, pcAOP) © OSA 2016

Algorithm 1 GTA gradient thresholding algorithm.

Require: y0, A0, B
Ensure: f̂

1: function GTA(y0, A0, B)
2: for `← 0,K−1 do
3: f̂`L ← ΨΨΨL(argminθθθ L

‖y − ALΨΨΨLθθθ L‖2
2 +

τ‖θθθ L‖1 +λ‖(C− I)(ΨΨΨLθθθ L)‖2
2) . Low-resolution

4: f̂`H ← Pf̂`L . Interpolation
5: g`← B2 f̂`H . Compute gradient
6: q`← (g` � 0) . Thresholding
7: t`← q`� t`d +(1−q`)� t`u, . Transmittance

8: for j← 0,N2L−1 do
9: k = b j/N2c, l = j mod N2

10: (t`k)l ← t`j . Rearrange t
11: for i← 0,KV −1 do
12: if i− `iV = j− k jN′ then
13: (ai) j← (t`i

k j
)i−`iv−k jN . Compute A

14: else
15: (ai) j← 0
16: y`+1← A`+1f . Next snapshot
17: return f̂←ΨΨΨ(argminθθθ ‖y−AΨΨΨθθθ‖2 + τ‖θθθ‖1)

(a) The figure depicts a comparison of the first spectral band
between the original, the non-adaptive C-CASSI and adaptive
C-CASSI.
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(b) The figure shows the quality of image reconstruction
against the number of snapshots, the simulations include tests
with Gaussian noise with SNR=10 dB, 20 dB and 30 dB.

Figure 2: The results show that the proposed method outperforms in up to 2 dB the traditional method.
CASSI and the solid line represents the adaptive C-CASSI. The proposed method outperforms the traditional method
in up to 2 dB when SNR = 10 dB. The most remarkable result from the data is that adaptive C-CASSI is significantly
more robust in presence of Gaussian noise than non-adaptive C-CASSI. The benefits in terms of suitable performance
to Gaussian noise and improvements in the quality of image reconstruction far outweigh the disadvantage with regards
to the computational cost to compute a low-resolution scene f̂L. In addition, the proposed method represents an useful
alternative to deal with Gaussian noise in real scenarios.

4. Conclusions

An adaptive C-CASSI system was proposed as an alternative to non-adaptive C-CASSI with the advantage of improved
quality of image reconstruction which deal better with the Gaussian noise. The proposed method outperforms the
traditional method in up to 2 dB.
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