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ABSTRACT

Imaging spectroscopy is an important area with many applications in surveillance, agriculture and medicine.
The disadvantage of conventional spectroscopy techniques is that they collect the whole datacube. In con-
trast, compressive spectral imaging systems capture snapshot compressive projections, which are the input of
reconstruction algorithms to yield the underlying datacube. Common compressive spectral imagers use coded
apertures to perform the coded projections. The coded apertures are the key elements in these imagers since they
define the sensing matrix of the system. The proper design of the coded aperture entries leads to a good quality
in the reconstruction. In addition, the compressive measurements are prone to saturation due to the limited
dynamic range of the sensor, hence the design of coded apertures must consider saturation. The saturation
errors in compressive measurements are unbounded and compressive sensing recovery algorithms only provide
solutions for bounded noise or bounded with high probability. In this paper it is proposed the design of uniform
adaptive grayscale coded apertures (UAGCA) to improve the dynamic range of the estimated spectral images
by reducing the saturation levels. The saturation is attenuated between snapshots using an adaptive filter which
updates the entries of the grayscale coded aperture based on the previous snapshots. The coded apertures are
optimized in terms of transmittance and number of grayscale levels. The advantage of the proposed method
is the efficient use of the dynamic range of the image sensor. Extensive simulations show improvements in the
image reconstruction of the proposed method compared with grayscale coded apertures (UGCA) and adaptive
block-unblock coded apertures (ABCA) in up to 10 dB.

Keywords: Multispectral and hyperspectral imaging, imaging systems, adaptive imaging, computational imag-
ing, coded aperture imaging.

1. INTRODUCTION

Imaging Spectroscopy (IS) has many applications: In surveillance, for instance, it is used for target acquisition
when there is not prior knowledge of the target. IS can be used for recognizing a human physiological state such
as that induced by stress or anxiety1. In remote sensing, IS is used to identify material in the unveil terrain.
In addition, trees are characterized based on the chemical substances contained in the foliage2. In medicine IS
is broadly used specially in disease diagnosis and image-guided surgery3. The spatially resolved spectral images
are used in the diagnostic information of tissues because they are able to detect biochemical changes due to
disease development. However, the disadvantage of the conventional imaging spectroscopy techniques is that
they measure the whole datacube which is time consuming and expensive.

The datacube is a three dimensional signal, with two spatial and one spectral dimension. Recent research devel-
oped the coded aperture snapshot spectral imager (CASSI) which is a spectral compressive imager that captures
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compressive spectral projections of the datacube4. The projections are the input of the convex optimization
reconstruction algorithms that allow to reconstruct the whole datacube. Contrary to the conventional tech-
niques, compressive spectral imager uses coded apertures to modulate the incoming light. The coded aperture
determines the sensing matrix of the system. Traditionally, the CASSI architecture uses block-unblock coded
apertures (BCA) to modulate the incoming light. The design of the coded apertures is critical in order to improve
the quality of image reconstruction5–8.

In CASSI the compressive measurements are subject to saturation when the illumination exceeds the dynamic
range of the focal plane array (FPA). The errors that yield saturation are unbounded and compressive sens-
ing recovery algorithms only provide solutions for bounded errors9. CASSI can be implemented with the most
common sensor devices such as a charge-coupled device (CCD) or a complementary metal-oxide-semiconductor
(CMOS). These sensors have a limited dynamic range, for instance, a detector with 8-bits is able to measure
28 = 256 intensity levels. Accordingly, the design of the coded apertures should consider this limitation of the
sensor.

Two approaches for dealing with saturated measurements are proposed in9. First, saturation rejection which
discard saturated measurements and then perform signal recovery on those remaining. Second, constrained
optimization, incorporating saturated measurements as constraints in the convex optimization problem. The
methods that increase dynamic range also reduce the saturation, however they introduce modification directly
in the sensor10. Other methods like temporal exposure change require post-processing algorithms10.

In consideration of improving the dynamic range of CASSI the adaptive grayscale coded aperture (AGCA) was
first introduced in11 and12. AGCA is a CASSI architecture with two modifications. First, the BCA is replaced
with a GCA in order to improve the modulation of the incoming light. Second, the adaptive system provides a
feedback between FPA and the digital micromirror device (DMD), such that the next coded aperture is computed
in a PC in real-time. Figure 1 shows an sketch of the AGCA. The proposed method reduces the saturation using
an adaptive uniform grayscale coded aperture (AUGCA) that increases the dynamic range of the system. The
modification of the architecture improves the adaptive system proposed in11 and introduces the uniform grayscale
coded aperture (UGCA).

Data cube Grayscale 
coded apertureObject lens

Transmission 
lens

Dispersive 
element

Transmission 
lens

Detector

T x, y( ) Gnm

��

y

��

O

��

x nth row

Gi  1,Gi  2...

Ti+1

Ti  1
,Ti  2

...
Gi

Ti

Feedback

mth column

'd 'd 'd 'd 'd 'd

Figure 1: Sketch of the adaptive grayscale coded aperture (AGCA). The AGCA is composed of two modifications
to the traditional CASSI. First, the BCA is replaced with the GCA in order to improve the modulation of the
incoming light. On the other hand, an adaptive system allows the feedback between the focal plane array and
the digital micromirror device. The adaptive system uses the compressive measurements to compute the next
coded aperture.
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Figure 2: Design of UGCA11

2. CASSI MATRIX MODEL

2.1 CASSI Model

A matrix model for the coded aperture apectral anapshot imaging (CASSI) has been developed in5. In this
model, a compressive measurement of the k − th slice can be represented by

y =

V−1∑
j=0

PV ;j

L−1∑
k=0

(ΘV )kIRFPL;kC(ΘT
L)j+1w, (1)

where y ∈ RV with V is N + L − 1, and each compressive measurement is composed by N slices. PV ;j is a

V ×V unique column/row matrix, (ΘV )k V ×V is a cyclic permutation matrix, ΘT
L is the transpose of a L×L

cyclic permutation matrix and R = diag(r̃). Figure 2a shows a sketch of the spectral data flow in CASSI with
the k − th slice highlighted. Figure 2b shows a top-view of CASSI in Fig. 2a. It shows the pixels of the coded
aperture t1, ..., t6 that produce saturation in the y6 position of the focal plane array.

2.2 Grayscale Boundary Function

The grayscale boundary function defines the intensity level of the uniform grayscale coded aperture (UGCA)
according to the desired transmittance, which is the fraction of light that the coded aperture allows to pass in
the CASSI system. The grayscale levels are generated following a uniform distribution across the GBF. The
GBF is defined as follows

IL =

{
[Imin, Imax ∗ 2 ∗ Tr] 0 ≤ Tr ≤ 0.5

[Imax ∗ (2 ∗ Tr − 1), Imax] 0.5 < Tr ≤ 1
(2)

where IL is the ordered pair that guarantees the desired transmittance Tr, Imin = 0 is the minimum grayscale
level of a digital micromirror device (DMD), Imax = 2m − 1 is the maximum grayscale level of the DMD where
m is the number of bits. Figure 3a depicts the GBF. The dashed line corresponds to the maximum boundary
of GBF and the straight line corresponds to the minimum boundary of the GBF. Figure 3b illustrates the
optimal transmittance according to the number of bits. It means that all the intensity graylevels are used
when Tr is 0.5. The design of uniform grayscale coded apertures (UGCA) is based on the grayscale boundary
function (GBF). The GBF restricts the grayscale levels in order to achieve the desired transmittance. The vector
r̃ = [r̃0, r̃1, ..., r̃M−1] represents the UGCA for the k − th slice according to the matrix model from Eq. 1.
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Figure 3: Design of UGCA

2.3 Adaptive Matrix Model

The compressive measurement can not be directly used in the adaptive algorithm proposed in10, due to the
spatial difference between the compressive measurements y ∈ RV and the coded aperture t̃ ∈ RN . In order to
adaptively design the coded aperture pattern for the next measurement, the the averaged intensity measurement
(AIM) is defined as

Ij =
1

L

L−1∑
`=0

yi+`, (3)

where Ij is the j − th AIM, j is the index j = {1, ..., N}, L is the number of spectral bands, yi is the i − th
compressive measurement of the k − th slice, with i = {1, ..., (N + L − 1)}. The k − th row of AIM, I, match
with the entries of the k − th slice of the coded aperture t̃. The coded aperture is defined as

t̃ = w̃ ◦ s + r̃ ◦ s, (4)

where ◦ is the Hadamard product between the vectors w̃ and s ∈ RN , and the vectors r̃ and s ∈ RN , s is a
binary array whose entries are one if the position of coded aperture yields a saturated pixel in the compressive
measurements in other case it is zero. s is the complement of s. w̃ is the attenuation of the adaptive filter defined
in10, r̃ is a uniform grayscale coded aperture.

The adaptive algorithm is based on10. The goal of the algorithm is try to bring all the irradiances values Ij
between a “desirable range” which is Ijdes ±∆Ij , avoiding the saturation Ijsat

w̃t+1
j =



α
w̃t

j

2
+ (1− α)w̃t

j Ij ≥ Ijsat

αw̃t
j

Ijdes
Ij

+ (1− α)w̃t
j Ijsat > Ij ≥ Ijdes + ∆Ij

w̃t
j Ijdes + ∆Ij > Ij ≥ Ijdes −∆Ij

βw̃t
j

Ijdes
Ij

+ (1− β)w̃t
j Ijdes −∆Ij > Ij

(5)



where w̃t+1
j is the attenuation of the j − th pixel in the coded aperture in t + 1, it is the next snapshot, w̃t

j is
the attenuation of the j − th pixel in the coded aperture in t, it is the current snapshot. In detail, if a pixel
is saturated, its transmittance is reduced in a large fraction. If the irradiance is below the saturation level but
above the desire range (Ijdes ± ∆Ij), then the transmittance is reduced. If it is below the desire range, the
transmittance is increased. If the irradiance lies between the desire range the transmittance is kept unchanged.
α and β are constants α = 1 and β = 0.5 according to10. The measurements that persist saturated was discarded
for AUGCA.

2.4 High dynamic range compressive spectral system

The dynamic range of a conventional CCD sensor is given by,

DR = 20 log
Imax

Imin
, (6)

where Imax and Imin are the maximum and minimum radiance values measure by the sensor, respectively. The
minimum radiance value is set up to 1. For that reason, 8-bit CCD have a dynamic range of 20 log(255) = dB.
On the other hand, the adaptive dynamic range combines the dynamic range of the DMD and the CCD and it
is given by

ADRC = 20 log
ImaxTrmax

IminTrmin
, (7)

where Trmax and Trmin are the maximum and minimum transmittance of the coded aperture, respectively.
The ADRC system is the sum of the dynamic ranges of the attenuator and the CCD sensor. Particularly, an
8-bits CCD and attenuator with control of 8-bits of precision, i.e. 20 log(255× 255) = 96.32, are equivalent to a
dynamic range of a 16-bit CCD.

3. RECONSTRUCTION

The two dimensional CASSI system requires to design N coded aperture rows t̃ to calculate the compressive
measurements ỹ. The set of all N rows of CASSI system can be written as,


ỹ0

ỹ1

...

ỹN−1

 =


H0 0 · · · 0

0 H1 · · · 0

...
...

. . .
...

0 0 · · · HN−1




f̃0

f̃1
...

f̃N−1

 . (8)

Furthermore, all measurements can be arranged as ỹ = [ỹT
0 , ỹ

T
1 , ..., ỹ

T
N−1]T such that

ỹ = Hf , (9)

where H is the sensing matrix of each of the 2D slices of the CASSI model. According to CS theory Hf is
expressed as a sparse representation as f = ΨΘ, where Ψ is a convenient representation basis and Θ is the
coefficients vector. Then equation 9 can be rewritten as,

ỹ = HΨΘ. (10)

The whole data cube can be recovered solving the convex optimization problem given by,

f = Ψ−1(argmin
Θ

‖y −HΨΘ‖2 + τ‖Θ‖1) (11)

where τ is a parameter that stimulates sparse solutions. The compressive spectral reconstructions are realized
with a compressive sensing based algorithm such as the gradient projection for sparse reconstruction (GPSR)13.



4. RESULTS

In this section the uniform adaptive grayscale coded apertures (UAGCA) are compared against the adaptive
block-unblock coded aperture (ABCA) and uniform grayscale coded aperture (UGCA). ABCA attenuate the
coded aperture blocking all the light. A set of compressive measurements is simulated using equation 1. The
dataset was captured using a CCD camera exhibiting 256× 256 of spatial resolution.

The dataset used in the experiments is showed in figure 4. The size of the datacube is 256× 256× 16. The reg-
ularization parameter is set to τ = 0.0001. The simulations were realized with saturation levels between 0% and
10%. Noise was added to the UAGCA, ABCA and UGCA compressive measurements with SNR = 10 dB. The
simulations with noise shows a behavior of the system close to the sytem implemented. The basis representation
is Ψ = Ψ1 ⊗Ψ2 where Ψ1 playing the role of spatial sparsifier as the 2D-Wavelet Symmlet 8 basis, and Ψ2 the
spectral sparsifier is the 1D-DCT basis.
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Figure 4: The datacube used for simulations with 256× 256 pixels of spatial resolution and 16 spectral bands

Figure 5 shows the quality of reconstructions against the number of snapshots for 1%, 4%, 7% and 10% of
saturation and the noise with SNR = 10 dB. The number of snapshots varies from 1 to 16. The quality of image
reconstruction is improved in up to 10 dB when the number of shots is increased, that is in at least 5 shots are
captured.

Figure 6 shows the quality of reconstruction as a function of the percentage of saturation for 2, 4, 8 and 12
snapshots and the noise with SNR = 10 dB. The percentage of saturation varies from 1% and 10%. In general,
the quality of image reconstruction is improved in up to 10 dB when the percentage of saturation is increased.

Figure 7 shows the quality of reconstruction for the UGCA, ABCA and AUGCA, where the number of snapshots
is 8 and noise with SNR = 10 dB. For UGCA the quality of reconstruction is PSNR=7.85 dB, ABCA is
PSNR=12.85 dB and AUGCA is PSNR=25.15 dB.

5. CONCLUSIONS

The uniform adaptive grayscale coded apertures (UAGCA) have been introduced in CASSI system to replace
the traditional block-unblock coded apertures. The proposed architecture permits to attenuate the effect of the
saturation of the FPA sensors and increase the dynamic range of the system from 8-bits to 16-bits. The designed
grayscale uniform coded apertures outperform the block-unblock adaptive coded apertures and grayscale coded
aperture in up to 10 dB in the quality of the reconstructed images.
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Figure 5: Quality of reconstruction as a function of the number of snapshots
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