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Abstract—Compressive hyperspectral imaging systems (CSI)
capture the three-dimensional (3D) information of a scene by
measuring two dimensional (2D) using a small set of coded focal
plane array (FPA) compressive measurement. A reconstruction
algorithm takes advantage of the compressive measurements
sparsity to recover the 3D data cube. Traditionally, CASSI uses
block-unblock coded apertures to spatially modulate the light,
the modulation has binary entries. In CASSI the quality of
the reconstructed images depends on the design of these coded
apertures and the FPA saturation. This work presents a new
CASSI architecture based on grayscaled coded apertures (GCA)
which reduce the saturation and increase the dynamic range of
the FPA detector. The set of codes is calculated in a realtime
adaptive manner such that the FPA compressive measurements
are used to determine the structure of the GCA. Simulations
show the improvement in the quality of the reconstructed images
of the architecture based on GCA.

Keywords—Compressive sensing, hyperspectral imaging, saturation,
dynamic range, coded aperture, optical imaging.

I. INTRODUCTION

The Coded Aperture Snapshot Spectral Imaging System
(CASSI) is an imaging architecture which senses the three di-
mensional spatio-spectral information of a scene with a single
two dimensional (2D) coded random projection measurement
set [1]. The CASSI optical architecture comprises five optical
elements: an object lens is used to form an image of a scene in
the plane of the coded aperture; the coded aperture modulates
the spatial information over the complete wavelength range;
a relay lens transmits the coded light field onto a dispersive
element, the dispersive element disperses the light before it
impinges on the focal plane array (FPA), the FPA captures
the compressive measurements. Given a set of compressive
measurements, compressive sensing theory (CS) [2], [3], [4] is
used to reconstruct the underlying data cube of size N×N×L
from just N × (N + (L− 1)) measurements, where N and N
are the spatial dimensions and L is the spectral depth of the
data cube. The quality of reconstructed images relies on the
design of the 2D set of coded apertures which block-unblock
the light from the scene.

A single shot CASSI measurement may not provide suffi-
cient number of compressive measurements. A recent modifi-
cation in CASSI allows multi-shot sensing procedures which
increase the number of compressive measurements, [5], [6].

In this architecture, each shot uses a distinct coded aperture
that remains fixed during the integration time of the detector
[5], [6]. The quality of reconstructed images improves in
multi-shot CASSI in proportion to the number of compressive
measurements [7], [8]. Each CASSI measurement shot adds
simultaneously N(N + L − 1) compressive measurements.
The total number of available measurement with K shots is
therefore KN(N + L− 1).

Traditionally, block-unblock coded apertures are imple-
mented using piezo systems [9] or a digital-micromirror-device
(DMD) [10] to vary the coding pattern in each snapshot. The
disadvantage of block-unblock coded apertures is that they
have just two binary values and therefore reduce the dynamic
range of the FPA sensor. To address this limitation, we propose
the use of GCA which can be implemented using a DMD or
other block-unblock device with high switching rate. DMD
takes advantage of the fast switching time of the micro-mirrors
which enables the use of a pulsewidth modulation technique
for the production of grayscale values. GCA have been used to
obtained spectral images with selective spectral profile using
the CASSI optical system [11]. GCA can be used to yield a
modulation of the transmittance and to increase the dynamic
range of the reconstructions.

Saturation occurs in the detector when compressive mea-
surements exceed the dynamic range of the quantizer. In that
case, these measurements take the value of the saturation level
[12]. In CASSI and multi-shot CASSI, each saturated pixel in
the sensor induces errors in the reconstructed image. Typically,
CASSI system employs CCD or CMOS sensor, both affected
by saturation depending on their dynamic range.

This work extends the compressive capabilities of CASSI
by replacing the traditional block-unblock coded apertures by
a set of GCA. Figure 1(a) shows the detail of the grayscale-
adaptive coded aperture where the attenuated pixel represents
an oscillating spatial modulator. Figure 1(b) shows the sketch
of the proposed architecture. Grayscale-adaptive coded aper-
ture multi-shot CASSI is motivated by the possibility to reduce
saturation levels through modulation of the amplitude of the
incoming scene. So we propose the use of an adaptive filter
(AF) which updates the GCA between shots. The AF compute
the next GCA based on previous compressive measurement
and prior GCA to reduce the positions of the scene that
contribute to saturation.
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Fig. 1: (a) Illustration of a grayscale coded aperture (GCA) (b) Sketch of the GCA-based
CASSI system with adaptive filtering to reduce the sensing saturation. The feedback
process uses the current measurement and the previous GCAs to create the next GCA to
be used.

In the following we introduce the block-unblock CASSI
optical model and present the grayscale-adaptive-based model.
Simulations are performed to evaluate the improvements at-
tained by the proposed grayscale-adaptive coded apertures.

II. SYSTEM MODEL

A. Block-Unblock CASSI System Model

The coded aperture single shot spectral imaging system
uses a traditional block-unblock coded aperture T (x, y) to
modulate the spatio-spectral density f0(x, y, λ), where (x, y)
are the spatial dimensions and λ represents the spectral dimen-
sion. The resulting coded field f1(x, y, λ), is then dispersed by
the dispersive element, resulting in,

f2(x, y, λ) =

∫∫
T (x′, y′)f0(x

′, y′, λ)

×h(x− x′ − αλ, y − y′)dx′dy′, (1)

where T (x′, y′) is the transmission function representing the
coded aperture, h(x− x′ − αλ, y − y′) is the optical impulse

response of the system and αλ is the dispersion induced
by the dispersive element assuming linear dispersion. The
compressive measurements across the FPA are realized by the
integration of the field f2(x, y, λ) over the detector range sen-
sitivity. The spectral density in front of the detector is given by
g(x, y) =

∫
Λ
f2(x, y, λ)dλ. When the optical impulse response

of the system is assumed linear and ideal, the resulting spectral
density is

g(x, y) =

∫
f0(x+ αλ, y, λ)T (x+ αλ, y)dλ. (2)

The coded aperture T (x, y) can be represented as a spa-
tially pixelated array. Assuming the coded aperture pixel size
is 4t and tn′,m′ represent a binary value, (0) block and (1)
unblock, the coded aperture can be expressed as,

T (x, y) =
∑
n′,m′

tn′,m′ rect
(
x

4t
−m′, y

4t
− n′

)
. (3)

Representing the spatio-spectral source density being in-
tegrated on the sensor in discrete form as Fn′,m′,k such that
n′ ∈ {0, ..., N − 1} indexes the x-axis, m′ ∈ {0, ..., N − 1}
the y-axis and k ∈ {0, ..., L − 1} the wavelength, Eq. 2 can
be succinctly expressed as,

Gn,m =

L−1∑
k=0

F(n−k),m,kT(n−k),m + ωn,m, (4)

where Gn,m is the intensity at the (n,m)th position of the
detector G with dimensions (N + L − 1) × N , for n ∈
{0, ..., (N + L − 1)}, and m ∈ {0, ...N − 1}. The spectral
data cube F has size N × N × L, and the indexes (n − k)
is defined between 1 ≤ (n − k) ≤ N , Tn,m is the (n,m)th

value in the spatial modulator and ω represents the noise of
the system.

B. Grayscale CASSI System Model

In this paper the block-unblock coded aperture is replaced
with a GCA, which modulates the source along the spatial
coordinates. The CASSI system architecture with GCA is
illustrated in Fig. 1(b), where the traditional block-unblock
coded aperture is replaced by the GCA depicted in Fig.
1(a). The coding is now realized by the GCA represented by
T̂ (x, y) which is applied to the spatio-spectral density source
f0(x, y, λ), resulting in the coded field f1(x, y, λ). This coded
field differs from the one achieved with the block-unblock
coded aperture in that a particular element of the grayscale
code attenuates the wavelenghts instead of blocking or un-
blocking the complete spectrum at a given spatial location.
The entries of the coded aperture tn′,m′ = {0, ..., l−1}, being
l the number of grayscale levels of the spatial modulator. In
this way, Eq. 4 can be rewritten as,

Gn,m =

L−1∑
k=0

F(n−k),m,kT̂(n−k),m + ωn,m. (5)
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C. FPA Saturation in CASSI

Saturation occurs when the measurements exceed the dy-
namic range of the sensor quantizer. The quantizer has finite
dynamic range due to two reasons, the first is related to
physical limitations that allow a finite range voltage to be
correctly converted to bits, and the second is that only a
finite number of bits are available to represent each value.
Quantization with saturation is referred to as finite-range quan-
tization [12]. The errors imposed by finite-range quantization
are unbounded. Compressive sensing (CS) recovery techniques
only provide guarantees for noise that is bounded, or bounded
with high probability [12]. There exist some reconstruction
algorithms that try to correct saturation by software [12], [14],
[15]. In contrast, we propose the saturation correction in the
sensing stage, in a real-time manner. Dealing with saturation
is important in CASSI because it reduces the attainable re-
construction quality. Figure 2 shows examples of compres-
sive measurements saturated by three distinct percentages of
saturated pixels (0%, 5% and 10%, respectively), and their
corresponding attained reconstructions using 4 shots. Notice
that, the higher the saturation percentages, the lower the quality
of the reconstructed images.

D. Adaptive Estimation of the GCA

In order to reduce the saturation level from the compressive
snapshots, an adaptive filter (AF) is designed such that it adap-
tively attenuate the entries of the spatial modulator when they
contribute to saturation. The process is considered adaptive
because either the previous coded apertures and the current
compressive snapshot are considered the inputs to compute
the attenuated coded apertures for the next snapshot as is
illustrated in Fig. 1(b). The input source is attenuated before
it is integrated by the detector, consequently, these coded
apertures will exhibit non-integer values, thus generating what
we call GCA. Formally, let Vi be the ith weight matrix, where
i ∈ {1, ...,K}, whose entries V in,m measure how many times
the coded aperture entry T in,m contribute to saturate entries in
the sensor. In particular, the entries of Vi can be written as
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Fig. 2: Compressive measurements with 3 different levels of saturation and their
respective reconstructions. (First row) Compressive measurements with 0%, 5%, and
10% of pixels saturated. (Second row) The corresponding reconstructions for 0%, 5%,
and 10% of saturation using 4 shots.

V in,m =

n∑
`=n−(L−1)

u[Gi`,m − s] + 1, (6)

where u[.] is the Unit step function, Gi`,m is the (`,m)th pixel
from the ith compressive snapshot; s = 2b − 1 represents the
saturation level of the sensor, which depends on the number
of bits (b) of the sensor, 1 is added in Eq. 6 because when∑n
`=n−(L−1) u[G

i
`,m − s] = 0 then V in,m = 1 attenuates only

the coded apertures entries that contribute to saturation. Notice
that Eq. 6 can be easily calculated in a real time approach
because each V in,m is a counter computed from compressive
measurements G with V in,m ∈ {1, .., L + 1}. Based on the
weighted matrix, a heuristic penalization function is generated
by assuming that the attenuation in a pixel of the spatial
modulator is inversely proportional to the weight matrix V.
That is, the penalization function can be seen as the attenuation
matrix W whose entries W i

nm are given by,

W i
n,m =

(
1

V in,m

)
·
(

1

V i−1n,m

)
, (7)

where V0 and V1 are assumed to be all-ones matrix. Notice
that the attenuation matrix Wi takes into account the previous
weighted matrices as means of the memory in the adaptive
filter to consider the information from previous snapshots.
Given the K randomly generated block-unblock coded aper-
tures T1, . . . ,TK , the corresponding GCAs T̂1, . . . , T̂K are
generated according to,

T̂i+1 = Ti+1 ◦Wi, (8)

where A ◦B is the Hadamard product between matrices A and
B. Notice that T̂1 = T1, that is, the first GCA remains as the
original, since the adaptive filter needs feedback to calculate a
new GCA, the feedback only occurs after the first snapshot.

III. SPECTRAL IMAGE RECONSTRUCTION

Compressive sensing theory can be used to recover a
spatio-spectral signal F ∈ RN×N×L or its vector represen-
tation f ∈ RN ·N ·L. Let θ be a S− sparse representation of f
in some basis Ψ, such that f = Ψθ can be approximated by a
linear combination of S vectors of Ψ with S � (N ·N · L).
Then, f can be reconstructed from d random projections with
high probability when d & S log(N · N · L) � (N · N · L).
In CASSI the projected measurements can be represented in
matrix form, such that y = Hf , where H is a N(N + L −
1)× (N ·N · L) matrix whose structure is determined by the
coded apertures and the dispersive element. Similarly, multi-
shot CASSI is represented as y` = H`f , where H` represents
the effect of the `th coded aperture [7], [8]. The set of K
compressive measurements with a distinct coded aperture is
then assembled as y = [(y0)T, ..., (yK−1)T]T. The CASSI
projections can be represented alternatively as y = HΨθ,
where the matrix A = HΨ is the sensing matrix. The
reconstructed data cube can be obtained by solving the mini-
mization problem f = Ψ(argmin

θ
‖y−HΨθ‖2+τ‖θ‖1) where

H = [(H0)T , ..., (HK−1)T ]T , θ is a S−sparse representation
of f on the basis Ψ, and τ is a constant of regularization.
The compressive sensing reconstruction is realized using the
GPSR algorithm [13]. The basis representation Ψ is set to be
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the Kronecker product of two basis Ψ = Ψ1 ⊗ Ψ2, where
Ψ1 playing the role of spatial sparsifier is the 2D-Wavelet
Symmlet 8 basis and Ψ2 being the spectral sparsifier is the
1D-DCT basis.

IV. RESULTS

In this section the grayscale-adaptive CASSI system is
compared against the traditional CASSI with block-unblock
coded apertures. A set of compressive measurements are
simulated using the models in Eq. (4) and Eq. (5). The test
data cube F with 256 × 256 pixels of spatial resolution and
L = 8 spectral bands is shown in Fig. 3. The measurements
were constructed using a test spectral database obtained using
a wide-band Xenon lamp as the light source, and a visi-
ble monochromator which spans the spectral range between
450nm and 650nm. The image intensity was captured using a
CCD camera exhibiting 256 × 256 pixels.

The simulations are performed in a desktop architecture
with an Intel i7-4770 3.4Ghz processor, 32 GB of RAM
memory and using Matlab R2012b. The block-unblock coded
apertures entries are realizations of a Bernoulli random vari-
able such that the transmittance of each pattern is constant,
25%. The GPSR algorithm use a value τ = 0.0001. The
GCA are random realizations of block, unblock and attenuation
elements, such that the transmittance in the first shot is 25%
and, it is updated in the following shots by the adaptive filter.
The number of saturated pixels in the measurements is varied
from 0% to 10%. The coded apertures are designed to have
256 × 256 spatial resolution.

Figure 4 shows four snapshots using the block-unblock
and the grayscale-adaptive coded apertures. The higher the
snapshot number the lower the percentage of saturation in
the compressive measurements. In addition, when more than
four snapshots are captured, the percentage of saturation is
approximately 0%. The silhouette of the compressive saturated
measurements can be observed in the grayscale-adaptive coded
aperture after the first snapshot. The resulting silhouette occurs
when the weighted matrix attenuates the pixels in the coded
aperture which are responsible for saturated values in the
compressive measurements.

Figure 5 shows the average reconstruction PSNR as a
function of the percentage of saturation. The grayscale adaptive
and the block-unblock coded apertures are compared for two,
four, six, and eight snapshots. In both cases there were included
tests with noise, in which the measurements were affected with
Gaussian noise with SNR = 10 dB.

Fig. 3: Spectral datacube for experimental simulations.

Figure 6 shows the average PSNR of the reconstructed data
cubes as a function of the number of snapshots. The recon-
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Fig. 5: Average reconstructions PSNR as a function of the percentage of saturation. The
grayscale adaptive coded apertures are compared with block-unblock coded apertures.
The PSNR is measured for GCA and block-unblock coded apertures for percentages of
saturation between 1% and 10%.

structed datacubes were obtained from FPA measurements with
saturation levels of 1%, 4%, 7% and 10%, respectively. The
block-unblock coded apertures and the GCAs are compared
adding Gaussian noise with SNR = 10 dB. The Fig. 7 shows the
reconstruction with block-unblock which attains 15.4032 dB,
and with grayscale-adaptive coded aperture attaining 27.5215
dB. The two reconstructions were obtained from FPA mea-
surements with 10% of saturated pixels.
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Fig. 6: Average PSNR of the reconstructed data cubes as a function of measurement
snapshots. The block-unblock-based and the grayscale adaptive-based CASSI imagers
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Fig. 7: Original and reconstructed images for block-unblock and grayscale-adaptive
coded apertures. The zoomed images present a detail for the head of the object, (top)
original and (bottom-left) the reconstructed image with block-unblock attaining 15.4032
dB, (bottom-right) grayscale-adaptive attaining 27.5215 dB. All reconstructions were
obtained from FPA measurements with 10% of saturated pixels.

V. CONCLUSION

Grayscale adaptive coded apertures have been introduced
in compressive spectral imaging system CASSI to replace
the traditional block-unblock coded apertures. The proposed
architecture permits to attenuate the effects of the saturation
on the FPA sensors. The designed grayscale coded apertures
outperform the block-unblock coded apertures in up to 12 dB
in the quality of the reconstructed images. The percentage of
saturation is corrected with grayscale adaptive coded apertures,
while block-unblock coded apertures are unable to do so.
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