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Abstract

3D modeling based on point clouds requires ground-filtering algorithms that sep-

arate ground from non-ground objects. This study presents two ground filtering

algorithms. The first one is based on normal vectors. It has two variants depend-

ing on the procedure to compute the k-nearest neighbors. The second algorithm

is based on transforming the cloud points into a voxel structure. To evaluate

them, the two algorithms are compared according to their execution time, effec-

tiveness and efficiency. Results show that the ground filtering algorithm based

on the voxel structure is faster in terms of execution time, effectiveness, and

efficiency than the normal vector ground filtering.

Keywords: Ground filter, normal vector, PCA, TLS, voxel.

1. Introduction

Since the development of LIDAR technology, it is easier to acquire the three-

dimensional spatial information component in a wide range of scales [1]. In the

form of a point cloud, the way this technology captures data presents several

challenges when processing this data. Among them, a significant challenge when

processing point clouds in urban environments is filtering ground points, as this

is essential for later segmentation and classification of objects.
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Several methodologies have been proposed to perform ground filtering in

Airborne laser scanning point cloud, such as, [2], [3]. Weighted regression tech-

niques are used in ground filtering in mobile laser scanner [4], [5], [6]. And

ground filtering techniques in terrestrial laser scanner usually are based on nor-

mal vectors. This approach computes the corresponding normal vector and

surface vector from the neighborhood of a point [7]. Once they are calculated,

the point is considered as belonging to the ground if the angle between these

two vectors is close to 90 degrees. Some points on trees and buildings may be

erroneously classified as ground; hence, these points are eliminated by adjusting

to a plane. To do this, a best-fitting plane to the points classified as the ground

is calculated. Then, the distance from each point to the plane is measured, and

the point with the minimum normal distance to the plane is determined. This

point is called Z0. After, an elevation threshold is set according to Z0, and

the points above and below the threshold are removed. This leads to ground

filtering that leaves only the curb’s limits, road lanes, and sidewalks.

Other methods to filter ground are based on structures that divide the point

cloud into small cubic sections called voxels [8]. The method identify the lowest

cubic section that is full, which means a section that contains at least one point

in each of the vertical columns of voxels. Voxels with these characteristics are

considered to contain ground points. Subsequently, from the points identified

as ground, the plane that best fits these points is calculated. The nearest points

to the plane will be classified as ground points. It should be noted that the use

of the voxel concept reduces the computational complexity of the problem since

it does not work directly on the points but on their aggregation as a voxel. This

approach has been successfully used in real-time curb detection applications for

mobile laser scanners [8]. Approaches involving voxels have also been used for

point cloud segmentation and classification [9].

In [10] the point cloud is divided into vertical columns, and each vertical

column is divided into cubes. For each point, the region of the vertical elevation

histogram in which it is located is calculated. The vertical elevation histogram

shows the number of points in each cube. The lowest cube in the vertical
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elevation histogram is then selected as ground.

In order to improve the segmentation of ground points, the point cloud must

be organized before processing. This organization reduces the computation

time of certain operations, such as nearest neighbors’ calculation, easing the

segmentation process. There are different algorithms for structuring a point

cloud. Among them, we can mention those based on the creation of a kd-

tree [11] and an octree [12]. These algorithms organize the points in a tree-

like data structure, which facilitates finding nearby points quickly by searching

through the created tree. However, the search of nearby points is possible only

after the computation of the tree. Also, the organization of point clouds with

these structures is performed on the totality of available data. However, the

reorganizing of point cloud is inconvenient at the time of processing because the

spatial characteristics of closer points are alike, making it unnecessary to study

distant points (the proximity is characterized according to the neighborhood

concept between points in space, see proposed methodology). Therefore, it is

more convenient to structure the point cloud into smaller sections. From now

on, these sections will be referred to as partitions and voxels.

This article presents two ground-filtering algorithms. The first one uses nor-

mal vectors and has two versions that vary concerning on calculating k-nearest

neighbors. K-nearest neighbors refer to the nearest k points to a pi point. The

first version uses a general-purpose library to calculate k-neighbors called KNN

CUDA; the second one uses a point cloud structuring algorithm called kd-tree

from the VTK® library. VTK is a C++ library for image processing and

graphic computing. In particular, VTK allows structuring point clouds using

Kd-trees. The second ground filtering algorithm presented is based on the point

cloud’s structuring into voxels, which groups nearby points, enabling operations

to be performed on the voxels instead of the points. The results show that the

voxel-based ground filtering algorithm is faster in terms of execution time than

the normal vector-based ground filtering algorithm.

This work is organized as follows: Section 2 briefly explains the character-

istics of the data used to test the algorithms, including the specifications of
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the hardware used to implement the proposed algorithms and the detailed de-

scription of the ground filtering algorithms developed, i.e., one based on normal

vectors and the other based on voxel structuring. In Section 3, the experimen-

tation and discussion of results can be found. Finally, Section 4 presents the

conclusions of this paper.

2. Methodology

The experimental scheme used for the present study is detailed below. Sec-

tion 2.1 explains the data used. Section 2.2 details the hardware used to run the

algorithms. Finally, section 2.3 describes the two ground filtering algorithms:

the first based on normal vectors, offering two versions that differ in the way

they calculate the neighbors of a point, and the second one, based on voxel

structuring.

2.1. Data

For the present study, data collected on the Carrera 27 from the 14th to

18th street corners in the city of Bucaramanga, Colombia, were used. The test

point cloud was captured using the Riegl VZ-400 terrestrial laser scanner. In

total, 11-point clouds were used. The number of points in each cloud is between

1047348 and 5523518.

2.2. Hardware and libraries used

The proposed algorithm was tested on a machine with the following speci-

fications: operating system Windows 10, an intel(R) Core(TM) i7-10750H 2.60

GHz, and a 6 GB NVIDIA GeForce RTX 2060 card. The algorithm was written

in C/C++ language, and the compilers used were gcc and g++. In addition,

the KNN CUDA and kd-tree VTK® algorithms were used to calculate the k-

nearest neighbors. The source code of the proposed approach is available in the

following repository1.

1The source code are available in the following GitHub repository.
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2.3. Filtering algorithms

In order to establish the nomenclature to be used throughout this paper,

the following definitions are proposed. Let P ∈ R
M×N be the matrix that

represents a 3D point cloud with N points. In more detail, each column of P is

a 3D vector, such that, P = [p1, . . . ,pi, . . . ,pN ], where pi ∈ R
M is the ith point

in the point cloud denoted by pi = [p(x,i), p(y,i), p(z,i)]
T , and i is the index of

the columns in P. The nearest points to point pj are called the neighbors and

are grouped according to the neighborhood relationship. Given the query point

pi the resulting K-nearest neighborhood matrix is given by Qi ∈ R
M×K , where

each column is a 3D vector, such that, Qi = [q1, . . . ,qk, . . . ,qK ], with K being

the number of neighbors of point pi. In the present research, two methodologies

for ground filtering were studied to evaluate which of them presented the best

performance and efficiency. The first one is based on the calculation of normal

vectors for each point, and the second one is based on the voxel construction

technique.

2.3.1. Normal vector calculation technique

Figure 1. depicts the flowchart of the proposed approach. Six stages compose

the algorithm, standardization, construct of 2D voxel grid, search of the k-

nearest neighbors, principal component analysis, adjusting of ground points to

a plane, and ground selection. In the following, each stage is explained.

Standardization: Before performing the calculations for the ground filtering

algorithm, it is convenient to standardize the data. This is due in principle to

two reasons: the overflow of memory by the calculations made on floating data

types and eliminating the outliers. In the first one, the coordinates (x, y, z) of

the point clouds are floating data types. For this reason, the calculations per-

formed on the video card may overflow the memory as the capacity supported

for this type of data is exceeded. This results in a loss of calculation accuracy.

On the other hand, the point cloud includes some atypical values that deviate

from the main group of points in the scene. These values are called outliers,

and their presence increases the extreme values in the coordinates (x, y, z). The
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standardization process was carried out by applying the logistics function (Ver-

hulst, 1845) at each coordinate (x, y, z) for all points in the cloud. An example

of standardization for the x coordinate is shown in equation 1, where x̂i is

the logistics function of the ith point of the x dimension. In this, τi is depen-

dent on four parameters: xi is the x component of the ith point; the variables

p̄x = 1
N

∑N

i=1 p(x,i) and σx = 1
N
(p(x,i) − p̄x)

2 are the mean and standard de-

viation of the x dimension; and the parameter r indicates how many standard

deviations are considered. In the present case, r = 1. The standardized points

are within the interval [0− 1].

Figure 1: Flowchart of ground filtering algorithm based on normal vector calculation.

p̂(x,i) =
1

1 + exp (−τi)
, where τi =

p(x,i) − p̄x

rσx

. (1)

Grid Construction: To avoid the assignment of points that are far from each

other to the same neighborhood, a mechanism was proposed to organize the

point cloud spatially and thus achieve better performance in searches. This

organization consists of building a 2D grid using the x and y axes of the point

cloud and then gridding the space at 0.1-meter intervals for each axis. These

values were determined by experimentation. It is common in the literature for

this parameter to be established experimentally. For instance, [8] have defined

0.2 meters as the voxel dimension. This grid has no limit on the z coordinate,

so each cell contains all the points within its x and y cell ranges, forming a type
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Figure 2: (a) 2D Grid division, (b) Segments with 65,536 points, (c) misclassified ground

filtration, (d) Ground filtering after the stages of the Näive Bayes classifier and adjustment of

points to the plane.

of vertical columns of points [8], as shown in figure 2(a). These vertical columns

are grouped sequentially to form segments of 65, 536 points as shown in figure

2(b). The segments have this size since it is the maximum number of points

that can be processed with KNN CUDA, according to tests shown in [13], [14].

The K-nearest neighbors in the edge of the segment with 65536 are calculated

using only points in the segment. This approach does not consider neighbors of

adjacent segments because this increases the computational time.

Normal vector calculation: The normal vector of each cloud point is calcu-

lated by using an algorithm that consists of two stages: the first one searches

for the K-nearest neighbors (KNN), and the second one uses the analysis of the

main components or Principal Component Analysis (PCA).

Search for K-NN : During this stage, the computing K-NN was conducted

in two ways: by structuring the point cloud in the form of a kd-tree via the

VTK® library [15], [16], and using the parallel programming paradigm through

the KNN CUDA library to calculate K-neighbors for each of the query pi points

[13], [14]. The video card processors of the machine used in this study were also

used. The number of neighbors is set to K = 50. The comparison of the time
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used under both approaches is shown in section 3, corresponding to the results.

Principal Component Analysis: The principal component analysis (PCA) is

computed from points in the K-neighborhood Qi of a giving query point pi,

where i ∈ [1, N ] is any point in the point cloud. Specifically, the first step to

obtain the PCA is computing the covariance matrix Sq ∈ R
M×M using equation

the following equation

Sq =
1

K

K
∑

k=1

qkq
T
k −mqm

T
q = (qk −mq)(qk −mq)

T , (2)

wheremq = 1
K

∑K

k=1 qk is the mean vector in a K-neighborhood. Then, finding

a set of M orthonormal eigenvectors vj for j = 1, . . . ,M is always possible

because Sq is real and symmetric matrix. Solving the following equation Sqvj =

λjvj produces eigenvalues λ = [λ1, λ2, λ3]
T , and eigenvectors vj for the points

in the neighborhood. After that, the eigenvalues are normalized according to

Nor(λj) =
λj

λ1 + λ2 + λ3
. (3)

Then, the normal vector to the surface corresponds to the eigenvector of the

smallest eigenvalues. Furthermore, three descriptors are defined to characterize

the type of shape of each Qi neighborhood: linear, flat, and volumetric [17]. Fi-

nally, each point is classified as a possible ground according to the angle between

the normalized eigenvalues Nor(λj) and the normal vector to the surface. The

angle should be found at the threshold [80,100] degrees according to [7], and the

geometric descriptor should be flat. If these two characteristics are met, the pi

point is classified as ground. Two matrices result once each point is classified.

Specifically, the matrix G ∈ R
M×U represent the U point classified as ground.

The matrix F ∈ R
M×V denotes the V points classified as non-ground, where

V = N − U .

Näıve Bayes Classifier: From the previous stage, most of the points that

were labeled as ground belongs to it. However, some points belonging to other

objects such as trees or buildings also met the condition of the angle between

their normalized eigenvalues and the normal vector and were therefore labeled
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as ground. In order to improve the previous classification, an algorithm based on

the probability of a point belonging to one of the two existing classes (ground

and non-ground) called the Näıve Bayes classifier was used. This algorithm

performs a neighborhood analysis of each point based on a sample and the total

number of points. For the case study, the a priori probability of points on the

ground P (U) is defined as the number of points on the ground U over the total

number of points N , see Equation (4). The a priori probability of points that

are not ground P (V ) is defined as the number of points that are not ground V

over the total number of points N , see Equation (5).

P (U) =
U

N
(4)

P (V ) =
V

N
. (5)

For each pi query point, its neighborhood Qi and its probability of belonging

to Qi are calculated using equations (6) and (7), where P (U |Qi) and P (V |Qi)

are the probabilities that the points in the neighborhood have of belonging to

one of the two classes. Where the number of ground point in Qi is denoted by

UQi
and the number non-ground points in Qi is denoted by VQi

, and K is the

number of points in the neighborhood of pi.

P (UQi
|Qi) =

UQi

K
, (6)

P (VQi
|Qi) =

VQi

K
. (7)

Finally, the a posteriori probability is calculated for the points that belong and

do not belong to the ground, see equation (8) and (9).

Pp(U) = P (U)P (UQi
|Qi), (8)

Pp(V ) = P (V )P (VQi
|Qi). (9)

The point is classified as ground if Pp(U) > Pp(V ) or as not ground if

Pp(U) < Pp(V ). The application of the Näıve Bayes classifier substantially
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improved the classification of the points. However, some points remained mis-

classified, as shown in Figure 2(c). For this reason, the strategy of adjusting the

points that belong to the ground to a plane was used in order to eliminate the

points that remain misclassified.

Adjusting ground points to a plane: The points that were classified as ground

were adjusted to a plane defined by αx+βy+γz+ δ = 0. The plane is obtained

using the RANSAC algorithm that calculates the coefficients α, β, γ, δ, then the

distance of each point pi to the plane is calculated

di =
αxj + βyj + γzj + δ

√

α2 + β2 + γ2
. (10)

Based on the distances di, the mean distance µ and its standard deviation σ are

calculated. The points are then classified as ground if they meet two criteria:

the first is that their distance di to the plane is within the distance threshold

of 10 cm, a value set based on experimentation. The second is that di is also

within the value of µ± σ. The result is shown in Figure 2(d).

2.3.2. Voxel-based ground filtering algorithm

Another approach studied for ground filtering is the voxel-based filtering

algorithm. Figure 3 shows the flowchart for the developed algorithm.

Figure 3: Flowchart of voxel-based ground filtering algorithm.

Division into voxels: The voxel-based division is a 3D spatial segmentation

that splits the 3D space and assigns each point to a segment, based on the three
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coordinates (x, y, z) of each point. This division of space into cubes called voxels

transforms the point cloud into a three-dimensional mesh, reducing computa-

tional complexity in nearest neighbors’ calculation. The size of the voxel is 10

cm. This size was determined experimentally and based on the work of [8]. It

should be noted that the voxel division is similar to the grid construction of the

ground filtering algorithm based on normal vectors, but with the particularity

of dividing also the z dimension. The result can be seen in Fig. 4(a).

Voxel selection by ranges of height: The criterion used to detect ground

points using the voxel division is based on the fact that ground sections are

nearly flat. Therefore, in each voxel, the z coordinate range is calculated as

follows: range = maxz–minz. This is done to quantify how flat the point cloud

section contained in each voxel is. If the range is below 0.04 cm, the voxel is

considered a horizontal surface. This parameter was defined by experimentation

results are shown in Figure 4(b).

Voxel organization using kd-trees: To structure the point cloud, a kd-tree

is created using the centroid of each voxel. This organization reduces the com-

plexity of searching for nearest neighbors. The centroid is calculated as shown

in equation 11. Let Vℓ ∈ R
M×L be the matrix that groups all the L points

within a ℓth voxel. The x-coordinate of the centroid for the points within the

voxel is calculated by

cx,ℓ =
max(V(x,l)) +min(V(x,l))

2
ℓ = (1, . . . , T ), (11)

where T denotes the total number of voxels. A similar calculation is performed

for the y and z coordinates, defining the centroid cℓ = [c(x,ℓ), c(y,ℓ), c(z,ℓ)]
T .

This point is representative of all points within the voxel. A kd-tree is created

with all centroids, which makes it possible to calculate neighborhoods among

voxels.

Statistical filter by height: In order to reduce the number of voxels that are

the farthest from the ground in a preliminary way, a statistical filter by height

is applied. More specifically, for voxels with a flat surface, i.e., with a range of
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Figure 4: The figure depicts the steps of the voxel algorithm, which has 5 parts. (a) Division

into voxels, (b) Voxel selection by ranges of height, (c) Statistical filter by height, (d) voxel

segmentation by 3D adjacency, (e) Check of voxel by neighborhood.
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0.04 cm, the z-coordinate of their respective centroid was averaged. From this

average, the horizontal surface threshold, shown in equation 12, was calculated.

The threshold is equal to the average of the horizontal surfaces plus one meter.

thresholdsh = averagesh + 1. (12)

Finally, the voxels below thresholdsh are selected (See Fig. 4 (c)), thus discard-

ing the voxels farthest from the ground.

Voxel segmentation by 3D adjacency: The voxels resulting from the previ-

ous step are arranged into segments. These segments are constructed using a

seed growth algorithm [18], which calculates each voxel’s neighborhoods using

adjacency 26. Adjacency 26 is defined as the neighborhood around a voxel [9].

See figure 4 (d), showing groups of voxels.

Adjustment of the centroids to a plane: After the voxel segmentation, the

points within the largest voxel segment are adjusted to a plane. This plane is

calculated using the centroids of the largest segment. The distance from each

centroid to the plane is then calculated according to Equation (10). The points

within the voxels that meet the criterion of adjustment of points from the ground

to a plane on section 2.3.1 and then have at least 2 points are selected.

Check of voxel by neighborhood: To verify the classification of points within

the voxel as ground and not ground, the number of ground and non-ground

voxels in adjacency 26 are counted. The points within the considered voxel are

reclassified according to the most significant number of neighboring voxels. The

filtering result is shown in Figure 4(e).

3. Experimental Results

This section discusses the results of the ground filtering algorithms in terms

of effectiveness and efficiency. The analysis includes a comparison between the

execution time of the ground filtering algorithm based on normal vectors varying

the function that calculates the nearest neighbors since that is the algorithm’s

bottleneck.

13



Furthermore, simulations with a benchmark dataset are included to evaluate

the proposed normal-vector and voxel-based ground filtering approaches. The

selected benchmark is the Paris-Lille-3D dataset [19], which contains ten classes,

i.e., class 0 unclassified, class 1 ground, class 2 building, class 3 pole - road sign

- traffic light, class 4 bollard - small pole, class 5 trash can, class 6 barrier, class

7 pedestrian, class 8 car, class 9 natural - vegetation. Specifically, Fig. 5(a)

depicts the different classes of one part of the scan of the Paris-Lille-3D dataset.

For the present study, it is preserved the ground class, and the other classes

are set as non-ground, as it is shown in Fig. 5(b). Four labeled scans of the

Paris-Lille-3D dataset are utilized to evaluate the performance of normal-vector

and voxel-based ground filtering. In addition, five metrics are included to assess

the performance of the ground filtering approaches.

(a) (b)

Figure 5: 3D Paris-Lille dataset. (a) 3D Paris-Lille classes, (b) established groundtruth map.

3.1. Accuracy Evaluation Metrics

To test the quality performance of the proposed methods, standard metrics

for semantic segmentation and binary classification tasks are used. Let TP, FP,

FN, and TN represent true positives, false positives, false negatives, and true

negatives, respectively. Then, the accuracy is given by

Accuracy =
(TP + TN)

(TP + FP + TN + FN)
. (13)
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The precision/correctness, recall/completeness are computed as follows:

Precision =
TP

(TP + FP )
, (14)

where the precision is the ratio of the true positives over the extracted ground

points, and the recall is the ratio of the true positives over the labeled ground-

truth ground points. The higher the value of the metrics, the better the perfor-

mance of the methods.

Recall =
TP

(TP + FN)
. (15)

Furthermore, it used an F-measure metric derived from the precision and

recall values for the point-based overall assessment, which is defined as follows

F −measure =
((1 + ǫ2)TP )

((1 + ǫ2)TP + ǫ2FN + FP )
, (16)

where ǫ = 1 is assumed. Moreover, the intersection over union (IoU) is uti-

lized. IoU is defined as the quantity of intersection of the prediction and the

groundtruth points divided by the union of them, which is given by

IoU =
TP

(TP + FP + FN)
. (17)

Different metrics are utilized to test the performance of the proposed ground

filtering approaches. In particular, Table 1 shows the performance of the two

proposed approaches, normal-vector, and voxel-based ground filtering, in terms

of accuracy, precision, recall, F-measure, and IoU. Besides, the four scans are

evaluated, Paris, Lille11, Lille12, and Lille2. According to the five metrics re-

sults, the normal-vector approach slightly outperforms the voxel-based filtering.

We evaluate the effectiveness of the proposed ground filtering approaches

using four scans of the benchmark Paris-Lille-3D dataset. Figure 6 depicts the

visual comparison of the normal-vector approach and the voxel-based ground

filtering against the groundtruth of the benchmark dataset. In accuracy, the

normal-vector outperforms the voxel-based ground filtering. Specifically, the

normal-vector obtains accuracy 1% higher than the voxel approach. Although
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Table 1: Performance of the proposed ground filtering methods on the Paris-Lille-3D dataset

for four different scans.

Paris-Lille-3D

Algorithm Metric Paris Lille11 Lille12 Lille2

Normal-vector

Accuracy(%) 98.10 99.21 98.21 99.00

Precision(%) 99.41 98.61 98.89 98.06

Recall(%) 95.87 99.69 97.94 99.90

F-measure(%) 97.61 99.15 98.41 98.97

IoU(%) 95.34 98.32 96.88 97.97

Voxel-based

Accuracy(%) 97.26 98.58 97.51 98.46

Precision(%) 95.52 97.09 97.58 96.93

Recall(%) 97.82 99.93 98.05 99.95

F-measure(%) 96.66 98.49 97.81 98.42

IoU(%) 93.53 97.03 95.73 96.89

both approaches are comparable in terms of accuracy, the normal-vector ap-

proach is computational slower than the voxel approach. Urban scenarios with

high density in the point cloud might be adequate for using a voxel-based ground

filtering approach.

Methods of the state-of-art are included to assess the performance of the

proposed ground filtering methods. The two methods of the state-of-art are

least-square fitting (LS) and principal component analysis (PCA) [20]. In par-

ticular, each row of Figure 7 depicts the ground classification results using one

out of four scans of the Paris-Lille-3d dataset. Besides, Figure 7(a) shows the

ground filtering using least square fitting. Figure 7(b) depicts ground filtering

using PCA and, Figure 7(c) corresponds to the groundtruth map. The accu-

racy of the LS methods is higher than the PCA for whole scans. In general,

LS performs better than PCA. However, the proposed approaches overcome the

classification ground filtering of both LS and PCA.

3.2. Parameter Sensitivity

3.2.1. Computation of Nearest Neighbor

Table 2 shows the times in minutes of the ground filtering algorithm based on

the normal vector, varying the method to calculate the nearest k-neighbors. A

GPU is used to implement the KNN algorithm of the CUDA library [13], [14] and

16



(a) (b) (c)

Figure 6: Comparison normal-vector ground filtering, and voxel-based ground filtering using

four scans of the Paris-Lille-3D dataset. The first, second, third, and fourth rows correspond

to Paris, Lille2, Lille11, and Lille12 scans, respectively. (a) ground filtering using normal-

vector approach, (b) ground filtering using voxel-based approach, (c) established groundtruth

map.

the kd-tree structuring algorithm of the VTK® library [15], [16]. The average

time per section using the KNN CUDA algorithm was 7.0533 minutes compared

to the average time per section using the kd-tree data structuring algorithm,

which was 5.0705 minutes. In terms of average time, the kd-tree algorithm

was faster compared to the parallelized KNN CUDA algorithm. However, the
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(a) (b) (c)

Figure 7: Comparison least square ground filtering, and PCA ground filtering using four scans

of the Paris-Lille-3D dataset. The first, second, third, and fourth rows correspond to Paris,

Lille2, Lille11, and Lille12 scans, respectively. (a) ground filtering using least square approach,

(b) ground filtering using PCA approach, (c) established groundtruth map.

voxel-based ground filtering algorithm shows an average time of 7.053 seconds

for all sections. This is considerably less than the two versions of the ground

filtering algorithm based on a normal vector. It is worth emphasizing that the

time measured for the normal-based filtering algorithm with its two variants

KNN CUDA and kd-tree VTK, and the voxel-based filtering algorithm include

all the steps of the algorithm. The algorithms’ lapses based on normal vectors

are shown in figure 5.
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Table 2: Time of the algorithm using KNN CUDA and kd-tree.

Section Total

points

Filtering

time with

kNN CUDA

(minutes)

Filtering time

with kd-

tree VTK®

(minutes)

Filtering time

with voxel

(seconds)

1 4531400 6.6090 5.9525 6.592

2 5330969 8.4784 7.3477 7.465

3 4555752 9.5016 6.0911 6.6460

4 1269017 1.7851 1.7526 3.8650

5 5200564 11.0656 7.0948 8.3440

6 5523518 7.3780 7.5220 8.0660

7 3098999 6.7554 4.0597 4.1880

8 3750184 9.1994 5.0981 5.8520

9 4678069 12.6099 6.4554 5.5120

10 1047348 2.6767 1.3546 1.5470

11 2247984 1.5271 3.0465 2.919

Average time 7.0533 5.0705 7.053

Figure 8: Computation time of the ground filtering algorithm by varying the function that

calculates the k- nearest neighbors.

Table 3 shows ground filtration results using the normal vector method and

the voxel method. %C shows the percentage of points correctly filtered, while

%E shows the percentage of points incorrectly classified. The two methods’

results are comparable in terms of percentage of points filtered and percentage

of error. The normal vector method presents better results for three sections,

while the voxel method presents better results for ten sections.

Table 4 shows the confusion matrix for each of the sections used. The con-

fusion matrix compares the ground filtration developed with the normal vector

method and the voxel method to the ground truth for each one of the sections. P
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Table 3: Percentage of points correctly and incorrectly filtered applying both methods.

Section Total

points

Normal vector method Voxel method

%C %E %C %E

1 4531400 97.42 2.58 97.63 2.37

2 5330699 92.04 7.96 98.35 1.65

3 4555752 98.13 1.87 97.96 2.04

4 1474729 95.25 4.75 98.43 1.57

5 5200564 94.23 5.77 95.12 4.88

6 5523518 97.43 2.57 97.14 2.86

7 3098999 98.05 1.95 97.79 2.21

8 3750184 98.54 1.46 98.61 1.39

9 4678069 92.83 7.17 98.44 1.56

10 1047348 98.64 1.36 99.01 0.99

11 2247981 91.77 8.23 98.73 1.27

Total 42063030 95.67 4.33 97.64 2.36

and N are Positive and Negative, respectively. The confusion matrix shows that

the Normal vector method and the Voxel method present comparable results

with respect to the ground truth.

4. Conclusions

In the experimentation, the average time of all sections for each algorithm

was calculated. The voxel-based ground filtering was found to be faster in

terms of average time than the normal vector algorithm, i.e., the average time

of the voxel algorithm was 7.053 seconds and was less than those of the ground

filtering that uses the search for the nearest k-neighbors. Two algorithms were

used to structure data using k-neighbors: the kd-tree version that took 5.0705

minutes and the KNN CUDA version of the algorithm took 7.0533 minutes.

Both algorithms proved to be effective in recognizing ground in urban settings.

As part of future studies, it is planned to make a voxel-based implementation

of segmentation and classification algorithms for point clouds that uses the

proposed ground filtering algorithm during the preliminary stage. Studies that
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Table 4: Confusion matrix for each of the ground filtering methods.

Section Groundtruth Classification

Normal vector method Voxel method

P N P N

1 P 2065224 13128 2129823 68301

N 103842 2349206 39243 2294033

2 P 1860416 11410 2221623 36444

N 412685 3046188 51478 3021154

3 P 2894538 29504 2875919 18907

N 55518 1576192 74137 1586789

4 P 468780 1179 526872 12481

N 68812 935958 10720 924656

5 P 2833947 266220 2784639 170330

N 33937 2066460 83245 2162350

6 P 3116226 115567 3092499 107531

N 26554 2265171 50281 2273207

7 P 2339287 40841 2314216 23938

N 19464 699407 44535 716310

8 P 2391553 40497 2378583 25090

N 14095 1304039 27065 1319446

9 P 2620212 11550 2897532 26545

N 323707 1722600 46387 1707605

10 P 755722 8025 758565 6993

N 6197 277404 3354 278436

11 P 1738240 5905 1898857 10033

N 179147 324689 18530 320561

consider non-urban settings are also recommended.
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