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H I G H L I G H T S

• The coded aperture in CSI systems performs the spectral scene codification.

• The acquired compressed measurements are prone to saturation in the sensor.

• The proper design of coded aperture entries leads to reduce saturation in the sensor.

• The proposed design in this paper incorporates two types of coding patterns.

• The quality of reconstructions is increased with the proposed method.
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A B S T R A C T

Imaging spectroscopy collects the spectral information of a scene by sensing all the spatial information across the
electromagnetic wavelengths and are useful for applications in surveillance, agriculture, and medicine, etc. In contrast,
compressive spectral imaging (CSI) systems capture compressed projections of the scene, which are then used to recover
the whole spectral scene. A key component in such optical systems is the coded aperture which performs the scene
codification and defines the sensing scheme of the system. The proper design of the coded aperture entries leads to good
quality reconstructions with few compressed measurements. Commonly, the acquired measurements are prone to
saturation due to the limited dynamic range of the sensor, however, the saturation is not usually taking into account in
the coded aperture design. The saturation errors in compressed measurements are unbounded leading to poor re-
constructions since CSI recovery algorithms only provide solutions for bounded or noisy-bounded errors. This paper
proposes an adaptive grayscale coded aperture design which combines the advantages of blue noise and block-unblock
coding patterns. Blue noise coding patterns are optimal and provide high-quality image reconstructions on regions of
non-saturated compressed pixels. On the other hand, the block-unblock coding patterns provide redundancy in the
sampling which helps to reduce the saturation in the detector. Further, the saturation is reduced between snapshots by
using an adaptive filter which updates the entries of the grayscale coded aperture based on the previously acquired
measurements. The proposed coded apertures are optimized such that the number of saturated measurements is
minimized. Extensive simulations and an experimental setup were made using the coded aperture snapshot spectral
imager (CASSI) sensing scheme, where the results show an improvement up to 2 dB of peak signal-to-noise ratio is
achieved when the proposed adaptive grayscale blue noise and block-unblock coded aperture (AGBBCA) design is
compared with adaptive grayscale block-unblock coded apertures (AGBCA).

1. Introduction

Spectral imaging (SI) captures the spectral information of a scene by
sensing a large amount of spatial information at different electromagnetic
radiation frequencies. Spectral images are regarded as three-dimensional
datasets or data cubes with two dimensions in the spatial domain x y( , ) and
one in the wavelength domain ( ). Knowledge of the spectral content at

various spatial locations from a scene can be a valuable tool for many ap-
plications [1–5]. In general, traditional sensing techniques construct a
spatio-spectral data cube by scanning the scene, either spectrally or spatially
in proportion to the desired spatial or spectral resolution, which in turn,
increases acquisition times. These techniques require to sense every single
voxel of the 3D scene, hence huge storage capacities and computational
resources are necessary in order to store and process such high dimensional
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images.
Recently, Compressive Spectral Imaging (CSI) has emerged as a new

approach which acquires compressed 2D projections of the entire data
cube rather than direct measurements of all voxels [6]. This enables to
sense and simultaneously reduce the data dimensionality without any
further processing step. Additionally, the cost of sensing, storing,
transmitting and processing a spectral image acquired using this ap-
proach is reduced. In order to acquire the compressed measurements,
CSI devices use an optical coding element such as a coded aperture
which modulates the scene, and a dispersive element to obtain the
spectral component of the image. According to their optical config-
uration, CSI devices employ different sampling strategies which allow
exploiting statistical properties of spectral data, leading to different
sensing performance in terms of spectral reconstruction quality.

The coded aperture snapshot spectral imager (CASSI) is a CSI device that
comprises five optical elements [7,8]: an objective lens which forms an
image of the scene in the coded aperture plane; a coded aperture which
modulate the spatial information over the complete wavelength range; a
relay lens that transmits the coded light field onto a dispersive element
which disperses the light before it impinges on the focal plane array (FPA).
In the mathematical model of CASSI, the structure of the system sensing
matrix is mainly determined by the coded aperture elements and the dis-
persion effect. Given a set of CASSI measurements and assuming that the
spectral image can be represented as a S-sparse signal in a given basis,
where S denotes the sparsity, the compressive sensing theory (CS) states that
the underlying spectral scene can be reconstructed solving a convex opti-
mization problem [9,6,10].

In CASSI, a spectral image × ×F N N L, with L spectral bands and
×N N pixels of spatial resolution, is first modulated by the coded

aperture and then dispersed by the prism obtaining a set of ×N V
compressed measurements, with = +V N L 1, yielding a compres-
sion ratio of NV N L L/ 1/2 . In general, CSI establishes that compressed
projections are sufficient to recover F with high probability [6]. Al-
though it has been shown that a single snapshot provides good re-
constructions, multiple additional measurements are required for spa-
tially detailed or spectrally rich scenes. For this reason, CSI devices
enable multiple snapshot acquisition to improve the spectral image
reconstructions [11,6]. Given that each CASSI snapshot simultaneously
adds NV compressive measurements, the total number of available
measurements when K snapshots are taken is KNV. In the CASSI mul-
tishot approach, a digital micromirror device (DMD) is used to change
the coding pattern, before each snapshot, and remains fixed during the
integration time of the detector [12]. As each snapshot acquisition is
performed with a different coding pattern, different compressed mea-
surements are captured each time. Besides acquiring multiple snap-
shots, different research works have shown that properly designing the
coded aperture pattern is critical in order to improve the quality of
image reconstruction [13–16].

In the traditional CASSI system, the coded aperture is a block-un-
block spatial light modulator (BCA), in which each spatial position is
either a transparent or opaque element that blocks or lets all the
spectral information of the pixels to pass through, so the source is
uniformly encoded across wavelengths [6]. Using BCA, the compressive
measurements are subject to saturation when the illumination exceeds
the dynamic range of the FPA. The errors that yield saturation are
unbounded and compressive sensing recovery algorithms only provide
solutions for bounded errors [17]. CASSI can be implemented with the
most common sensor devices such as a charge-coupled device (CCD) or
a complementary metal-oxide-semiconductor (CMOS). These sensors
have a limited dynamic range, for instance, a detector with 16-bits is
able to measure =2 65, 53616 intensity levels.

In the literature, there are different approaches to deal with satu-
rated measurements. For instance, in [17], two approaches are pro-
posed: the first method remove the saturation by discarding saturated
measurements and then performing signal recovery using the remaining
ones; the second approach deals with saturation by incorporating the

saturated measurements as constraints in the recovery optimization
problem. On the other hand, recent approaches propose to avoid the
saturation and to increase the dynamic range of the system by im-
proving the incoming light modulation using grayscale-adaptive coded
apertures (GCA), which can be also implemented using a DMD [18].
Specifically, the GCA takes advantage of the fast switching time of the
micro-mirrors which enables the use of a pulse-width modulation
technique for the production of grayscale values. Furthermore, the
coding pattern of the next snapshot is adaptively generated, through a
computer real-time model (Feedback), taking into account the current
obtained compressed measurements set and a penalization function
[18,19]. However, these design approaches rely on randomly generated
patterns to adaptively produce the next coded apertures.

In CASSI, it is possible to optimally design a set of coded apertures that
minimizes the number of FPA snapshots while attaining the highest-quality
reconstruction [20]. Therefore, in this work, we rely on such optimally
designed coding patterns to produce grayscale coded apertures using an
adaptive model. The proposed method efficiently improve the quality of
image reconstruction by reducing the saturation of compressed measure-
ments while the dynamic range of the sensor is increased. This paper is
organized as follows: first, the mathematical model of the sensing process
behind CASSI multishot system is described. Then, the optimal blue noise
coding patterns design and the FPA saturation in CASSI are presented.
Subsequently, the proposed adaptively designed grayscale coded aperture
(AGBBCA) is developed. Finally, simulations are performed to test the
quality of the proposed coded aperture design.

2. CASSI system

2.1. CASSI continuous and discrete model

The CASSI sensing process is depicted in Fig. 1. In the -th CASSI
snapshot, the spatio-spectral density source f x y( , , )0 , where x y( , ) are
the spatial coordinates and is the wavelength, is first coded by a coded
aperture T x y( , ) and then, the resulting coded field f x y( , , )1 is
spectrally dispersed by a dispersive element before it impinges on the
FPA as f x y( , , )2 ,

= ×f x y T x y f x y h x D x y y dx dy, , , , , ( ) , ,2 0

(1)

where h (·) is the optical impulse response of the system and D ( ) is the
dispersion function of the dispersive element which operates along the
x axis. The resulting intensity image at the FPA is the integration of the
field f x y( , , )2 over the detector’s spectral range sensitivity.

The input spatio-spectral scene can be represented as a discrete data
cube , with L spectral bands of ×N N pixels. Each source
voxel is indexed as Fm n k, , , where = =m N n N0, , 1, 0, , 1 are
the discrete indices for the spatial dimensions and =k L0, , 1 indexes
the spectral bands. In addition, the -th coded aperture can be represented
in discrete form as ×T N N , which entries Tm n, have binary values that
block (0) or allow the passage of light (1). Following the mathematical
model in [7], the CASSI measurements can be succinctly expressed as

F= +
=

G T ,m n
k

L

m n k k m n k m n,
0

1

,( ), ,( ) ,
(2)

where Gm n, is the intensity at the m n( , )-th position of the detector, with
dimensions × +N N L 1, acquired in the -th snapshot.

In this work, we replace the block-unblock coded aperture (BCA)
with a grayscale coded aperture (GCA), which also modulates the
source along spectral coordinate. The modified GCA-CASSI system is
depicted in Fig. 2. The spectral image codification, in the -th snapshot,
is now performed by the GCA represented by T x y( , ) which is applied
to the spatio-spectral density source f x y( , , )0 , obtaining the coded
field f x y¯ ( , , )1 . Note that this field is different from f x y( , , )1 , which
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is achieved with a traditional BCA. In particular, instead of block-un-
block the complete spectrum at a given spatial location, the GCA
modulates the incident light in that particular spatial position taking
into account the grayscale level of the GCA pixel. The discrete entries of
the -th GCA Tm n, vary in the range l{0 ( 1)}, being l the number of
grayscale levels of the DMD. In this way, Eq. (2) can be rewritten as

F= +
=

G T ,m n
k

L

m n k k m n k m n,
0

1

,( ), ,( ) ,
(3)

where Gm n, is the compressed value at the m n( , ) position, in the -th
FPA measurement acquired with a GCA coded aperture.

2.2. Matrix model

The set of compressive measurements G , from Eq. (3), can be ex-
pressed in vector notation as g , so each capture of the GCA-CASSI
system can be modeled by

=g H f, (4)

where =f f fvec([ , , ])L0 1 is the vector representation of the spatio-
spectral input source F, being fk the vectorization of the k-th spectral
band, and H is a compressive projection matrix corresponding to the
-th GCA coded aperture. More specifically, H is a ×NV N L2 sparse

matrix whose nonzero entries are determined by the grayscale values of
the GCA T , and its structure accounts for the effect of dispersion given
by the prism. Taking this into account, the structure of the output g in
Eq. (4) can be succinctly expressed as

where diag(t̄) is an diagonal matrix whose entries are elements of the
grayscale coded aperture in vector form t̄. The measurement vectors g
acquired at each GCA-CASSI snapshot can be succinctly expressed in
vector form as =g g g g[( ) , ( ) , , ( ) ]T T K T T0 1 1 , with = K0, 1, , 1
snapshots. Therefore, Eq. (4) can be rewritten in the standard form of
an underdetermined system of linear equations

=g Hf, (6)

were =H H H H[( ) , ( ) , , ( ) ]T T K T T0 1 1 is the concatenation of all ma-
trices H .

Fig. 2. Sketch of the adaptive grayscale coded
aperture (AGCA) CASSI system. The AGCA is com-
posed of two modifications to the traditional CASSI.
First, the BCA is replaced with the GCA in order to
improve the modulation of the incoming light. On
the other hand, an adaptive system allows feedback
between the focal plane array and the digital mi-
cromirror device. The adaptive system uses the
compressive measurements to compute the next
coded aperture.

Fig. 1. Schematic representation of the CASSI sensing process.

(5)
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2.3. Spectral image reconstruction

After the compressive measurements acquisition, the subsequent
procedure is to recover the underlying 3D scene. However, the amount
of acquired measurements +KN N L( 1), where K L is the number
of measurement shots, is far less than the number of 3D data cube
entries to be estimated N L2 . Therefore, the spectral image reconstruc-
tion problem is ill-posed, hence it cannot be solved by directly inverting
the system in Eq. (6).

The theory of compressive sensing (CS) provides an alternative
method to recover the underlying spectral scene f from the measure-
ment g. In general, CS assumes that f N L2 has a S-sparse re-
presentation in a given basis , and there exists high incoherence be-
tween the sensing matrix H and . Then, the measurement set g in Eq.
(6) can be expressed as =g H , where =f and is a sparse vector
with S N L2 nonzero entries, such that f can be approximated as a
linear combination of only S columns of . Then, the inverse CS pro-
blem consist on recovering such that the 2 1 cost function is
minimized, i.e. it looks for a sparse approximation of the spatio-spectral
data cube. Mathematically, the optimization problem can be written as

= +f g A{argmin },
2

2

1 (7)

where =A H f, is an estimation of the underlying spectral scene and
is a regularization parameter. The basis representation is set as the

Kronecker product of three basis = 1 2 3, where the
combination 1 2 is the 2D-Wavelet Symmlet 8 basis and 3 is the
Discrete Cosine basis. The 2D-wavelet is used for the image compres-
sion in the spatial domain, while the Discrete Cosine basis perform
compression on the spectral information.

2.4. Optimal designed coded apertures

Note that the structure of A, known as the CASSI sensing matrix, is
critical in the inverse problem shown in Eq. (7) as it ultimately de-
termines the attainable quality of reconstruction. As the basis is
fixed, the structure of A is determined by the same optical elements as
in the projection matrix H, i.e., the structure of A is determined by the
dispersive effect, given by the prism, and the non-zero coefficients are
defined by the coded aperture used in each measurement shot, which is

the only non-fixed element.
Accordingly, different research works have focused on optimally

design the set of coded apertures in order to forge a structure on A that
minimizes the required number of FPA snapshots while attaining the
highest-quality reconstruction. Commonly, such works take into ac-
count the restricted isometry property (RIP) of the sensing matrix and
the correlation between H and as the coded apertures design criteria
[15,20,13,19]. Particularly, in order to guarantee a correct recovery of
the underlying signal, CS requires the acquired measurements to be
uncorrelated, and the coherence is used to measure the correlation
between H and , such that the CS condition hold. The coherence of
CASSI sensing matrix can be calculated as

=µ i j i i j jmax TPSF , / TPSF( , )TPSF( , ) ,
i j (8)

where =i j H HTPSF( , ) ( )T T
i j, is a transform point-spread function,

as defined in [21,22]. Then, as we are interested in how uncorrelated
are the matrices H and , the incoherence can be defined as =µ µ1 .

On the other hand, the RIP establishes necessary conditions for A
such that the 2 norm of the underlying 3D spectral image is approxi-
mately preserved under the transformation A . Specifically, if the
matrix A satisfies the RIP, then there exists a restricted isometry con-
stant such that +A(1 ) (1 )2 2 2 [23,15]. The RIP
requires that all T×m column submatrices TA of A are well con-
ditioned for all T S, where = +m KN N L( 1). This is equivalent
that all eigenvalues of matrices T TA AT are in the interval

+[1 , 1 ]. The probability that this condition is satisfied can be
calculated by estimating the statistical distribution of the maximum
eigenvalue max of the matrices T TA A IT , where I is an identity
matrix. The max distribution is estimated using concentration of mea-
sure for random matrices developed in [24].

Recently a coded aperture design whose nonzero coefficient dis-
tribution exhibits spatiotemporal characteristics of blue noise patterns,
that suppress low-frequency components of noise, has been developed.
Specifically, Authors in [20] present an optimally-designed coded
aperture set such that the RIP of A is satisfied with high probability and
H presents high incoherence with respect to the sparse representation
basis . In general, the spatiotemporal blue noise coded aperture (BN)
design relies on three criteria: horizontal separation, vertical separa-
tion, and temporal correlation. The algorithm that generates the BN
coded apertures, first opens a local window Up , of size × , centered
at the same point in each coded aperture T , for = K0, 1 , 1, and
then sums the number of ones in the vertical, horizontal and diagonal
directions. Using these quantities, a metric is calculated taking into
account four given weights. Finally, for each spatial location, the al-
gorithm inserts the nonzero element in the coded aperture with the
minimum concentration of ones in the window. Fig. 3. shows a com-
parison between a block-unblock coded aperture, and a BN coded
aperture. In addition, the corresponding quality of image reconstruc-
tion, in terms of peak signal-to-noise ratio (PSNR), is depicted for the
block-unblock 36.7955 dB, and BN 40.5729 dB, using 8 snapshots in both
cases. It can be noted that the concentration (clusters) of ones in the
resulting coded aperture is considerably minimized which entails high
incoherence with respect to the sparse representation basis and that the
RIP is satisfied with high probability.

2.5. FPA saturation in CASSI

The FPA Saturation appears when the number of measurements
exceeds the dynamic range of the sensor quantizer [18]. The finiteness
of dynamic range is due to two reasons: the first is related to physical
limitations that allow a finite range voltage to be correctly converted to
bits; the second is that only a finite number of bits are available to
represent each value. Quantization with saturation is referred to as fi-
nite-range quantization [25]. The noise imposed by such finite-range

Fig. 3. Example of a block-unblock coded aperture and BN coded aperture and
their corresponding image reconstruction. The quality of image reconstruction
for block-unblock 36.7955 dB, and blue noise 40.5729 dB.
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quantization is unbounded. However, CS recovery techniques only
provide guarantees for bounded noise or bounded with high probability
[25]. Therefore, dealing with saturation in CASSI is an important issue
since it reduces the attainable reconstruction quality. Fig. 4 shows ex-
amples of compressive measurements, generated using Eq. (3), four
distinct percentages of saturated pixels (0%, 10% and 20%, and 30%
respectively), and their corresponding attained reconstructions using 8
shots. Notice that the higher the saturation percentage, the lower the
quality of the reconstructed image. A detailed illustration of CASSI
measurements saturation can be found in [18]. The FPA saturation in
CASSI can be avoided by replacing the traditional BCA with a GCA
coded aperture.

3. Adaptively designed grayscale coded apertures

In this section, an adaptive grayscale coded aperture design, which
combines the advantages of blue noise and block-unblock coding pat-
terns, is developed. In general, the proposed algorithm generates a blue
noise coded aperture ensemble and then the saturation is reduced be-
tween snapshots by using an adaptive filter which updates the entries of
the grayscale coded aperture based on the previously acquired mea-
surements.

3.1. Adaptive grayscale block-unblock coded aperture

The adaptive grayscale block-unblock coded aperture (AGBCA) uses
random coding patterns that follow a Bernoulli distribution. The coded
aperture ensemble can be represented for all snapshots as 3D structure

denoted by , where indexes a specific snapshot, and l represents the
wavelength index. Given the vectorization of the 3D structure denoted
by = vect T( )l l . In addition, the percent of the light that reaches the
sensor, known as transmittance, is 50% in the AGBCA, hence the coded
aperture can be generated as BerT (0.5)l . Examples of the AGBCA
coded aperture and the acquired compressed measurements are shown
in Fig. 5. The first column represents the generated coded aperture, and
the second one denotes the acquired compressed measurements for the
1,3,5 and 7 snapshot, respectively. The red region denotes the grayscale
coded aperture with block-unblock spatial distribution. Notice that, in
the first snapshot, the percentage of saturation in the compressive
measurements is 10.52%, but the percentage of saturation is reduced at
each snapshot.

3.2. Adaptive grayscale blue noise and block-unblock coded aperture

The adaptive grayscale blue noise and block-unblock coded aperture
(AGBBCA) approach use a combination of blue noise and block-unblock
coding patterns. Specifically, in the region of the sensor where pixels
are not saturated, the proposed design uses optimal blue noise coding
patterns. Similarly, in regions of the sensor where pixels are saturated,
the proposed design uses block-unblock coding patterns. The intuition
behind this design is that blue noise coded apertures optimize the
sampling since each pixel of the scene is sampled once and the distance
between samples is the maximum [20], which will satisfy the RIP with
high probability. However, in a saturated scenario, many compressed
measurements reach the limit of the detector’s dynamic range. Due to
the lack of redundancy in the sampling when optimal blue noise coded

Fig. 4. Compressive measurements for 4 levels of
saturation and their respective image reconstruction.
First row, compressive measurements with 0%, 10%,
20%, and 30% FPA saturation. Second row, the cor-
responding image reconstruction for 0%, 10%, 20%,
and 30% using 8 snapshots. The type coded aperture
is block-unblock.

Fig. 5. Comparison between the AGBBCA and
AGBCA for 1,3,5, and 7 snapshots. The AGBBCA and
the AGBCA, the red region in the coded aperture
denote the portion of the coding pattern with
grayscale and the corresponding compressive mea-
surements are shown with the percentage of sa-
turation at each snapshot. (For interpretation of the
references to colour in this figure legend, the reader
is referred to the web version of this article.)
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apertures are used, a re-sample of the saturated measurement is not
possible. However, exploiting the redundancy of block-unblock coded
apertures it is possible to re-sample in the saturated scenario. Similarly,
to block-unblock coded apertures, the blue noise coded apertures can be
represented as a 3D structure. Formally, T BN(1/L)l represents a blue
noise coded aperture in the l wavelength, described in Section 2.4. The
vectorization of all coded apertures is denoted by = vect T( )l l . Ex-
amples of the proposed coded aperture AGBBCA and compressed
measurements are shown in the third and fourth column of Fig. 5, re-

spectively. The red regions, shown in the third row, denotes the
grayscale coded aperture with block-unblock spatial distribution. No-
tice that in the first snapshot the percentage of saturation in the com-
pressive measurements is 10%, but the percentage of saturation is re-
duced at each snapshot.

3.3. Adaptive algorithm to reduce saturation using grayscale coded
apertures

The algorithm receives as input the first compressive measurements
and a set of K coded apertures which can be either block-unblock
(AGBCA) or blue noise (AGBBCA). The output is the reconstructed
datacube. The Algorithm 1 iterates until the number of snapshots is
reached. At the begin of line 3, using the previous compressive mea-
surement, the algorithm creates a vector sats g( )1 with the
number of times that a pixel in the coded aperture induces saturation in
the detector. The thresholding on line 4 identifies two regions in the
coded aperture, the entries involved in saturation q , and the entries not
involved in saturation 1 q . Two vectors are required to compute the
next coded aperture: a block-unblock coded aperture and the vector-
ization of the th coded aperture, either block-unblock or blue noise.
The next coded aperture realization is computed reducing the trans-
mittance of the entries in the coded aperture involved with saturation,
according to the previous snapshot. In more detail, the line 7 reduce the
transmittance in the unblock entries to 5% of the previous value, in the
region of the coded aperture which involves the saturation q , and re-
mains the transmittance of the unblock entries in the no saturated re-
gions 1 q .

The remaining steps of the Algorithm 1 rearrange the vectorization
form of r to the corresponding matrix H . More precisely, in line 8, the

vector r is rearranged as the 2D k-th plane according to r r( )k l n.
Subsequently, in line 10, the vectorization of the colored coded aper-
ture r is stacked in the sensing matrix H according to
H r( ) ( )m n k m v k Nn

m
m n

, = = …k n N m V K/ , / , {0, , 1}n m m
2 .

In line 11, the adaptive snapshot is captured as g H f . Finally, in
line 12, an approximation of the datacube f is obtained as the output of
Algorithm 1.

Algorithm 1. Adaptive grayscale blue noise block-unblock coded
aperture (AGBBCA).

4. Simulations

In this section, the adaptive grayscale blue noise and block-unblock
coded apertures (AGBBCA) are compared against adaptive grayscale
block-unblock coded aperture (AGBCA). A set of compressive mea-
surements is simulated using Eq. (6). The datasets used in the experi-
ments are the Superballs and Glass-Tiles scenes which are shown in
Fig. 6(a) and (b), respectively. The dataset was captured using a CCD
camera exhibiting ×256 256 of spatial resolution and 16 spectral bands.
The width wavelength spans between 400 and 700 nm. The regular-
ization parameter is set to = 0.0001. The simulations were realized
with saturation levels between 10% and 30%. 10 dB of SNR noise was
added to the AGBBCA and AGBCA compressive measurements. The
basis representation is set to be = 1 2 where 1 playing the
role of spatial sparsifier as the 2D-Wavelet Symmlet 8 basis, and 2 the
spectral sparsifier is the 1D-DCT basis. The MATLAB code of the si-
mulations can be downloaded from the project repository.1

One outstanding metric to compare coded apertures is the radially
averaged power spectrum density (RASPD) [26]. In the Fourier domain,
the power spectrum of a coded aperture can be computed by spectral
estimation. Bartlett‘s method is used for spectral estimation. The
method is based on averaging periodograms, where a periodogram is
the magnitude squared of the Fourier transform of a sample output
divided by the sample size. The RASPD metric is used to determine
attributes in lithography codes. In particular, the radial spectrum de-
scribed by the block-unblock coded aperture is flat, in contrast, that
from the blue noise coded aperture changes along the radial axis as
depicted in Fig. 7 (a). The patterns used to attenuate the saturation are

1 https://git.io/fjqlU.
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a hybrid between blue noise and grayscale (AGBBCA) or block unblock
and grayscale (AGBCA). When the coded aperture is hybrid (AGBBCA)
the radial spectrum curve is flatter in comparison with the blue noise
radial spectrum as shows the Fig. 7 (b) because it is the combination of
two coding patterns block-unblock and blue noise, however, it pre-
serves some values in the high frequencies.

Fig. 8 shows the quality of reconstructions against the number of
snapshots for 10%, and 20% percentage of saturation and the noise with

=SNR 10 dB. The first row shows the quality of image reconstruction
for the Superballs scene. The second row depicts the quality of image
reconstruction when the scene is Glass-Tiles. The number of snapshots
varies from 1 to 8. The quality of image reconstruction improves in up
to 2 dB when the number of snapshots is increased, particularly, when
at least 5 snapshots are captured.

Fig. 9 shows the quality of reconstruction as a function of the per-
centage of saturation. The first, second and third rows depict the quality
of image reconstruction against the percentage of saturation for 4, 6 and
8 snapshots. The noise added to the compressive measurements is

=SNR 10 dB, and the percentage of saturation varies from 10% to 30%.
In general, the quality of image reconstruction is improved in up to 2 dB
when the number of snapshot increase.

Fig. 10 shows RGB reconstruction with the Superballs and Glass-
Tiles scene using the AGBBCA, and AGBCA, with 8 snapshots, noise
with =SNR 10 dB, and percentage of saturation 10%. In the first row is
depicted the RGB representation of Superballs scene and the corre-
sponding reconstruction using AGBCA and AGBBCA. The quality of

Fig. 6. Datacubes used for simulations with ×256 256 pixels of spatial resolution and 16 spectral bands within the range 400–700 nm. The first and second rows show
the Superballs scene. The third and fourth rows correspond to the Glass-Tiles scene.

Fig. 7. (a) Comparison of the radially averaged power spectral (RASPD) density for the random and BN coded apertures. (b) Comparison of RASPD for AGBBCA, and
AGBCA.

Fig. 8. Quality of reconstruction against the number of snapshots for (first row)
Superballs and (second row) Glass-Tiles scenes.

N. Diaz, et al. Optics and Laser Technology 117 (2019) 147–157

153



image reconstruction via AGBCA is PSNR = 22.27 dB, in contrast, the
quality of image reconstruction using AGBBCA is PSNR = 24.88 dB.
The second row shows the RGB representation of Glass-Tiles scene, and
the corresponding reconstruction using AGBCA and AGBBCA. The
quality of image reconstruction using AGBCA is PSNR = 20.9508 dB,
which is overcome by AGBBCA with PSNR = 22.1557 dB.

The Fig. 11 depicts the comparison of quality of image reconstruc-
tion using the AGBCA, and the proposed AGBBCA using two databases
Superballs and Glass-Tiles. The number of snapshots is = {1, 3, 5, 7},
the percentage of saturation using in this experiment is 20%, and the
percentage of noise is =SNR 10 dB. The first and third rows show the
reconstructed images using the AGBCA. The second and fourth rows
show the reconstructed images using the AGBBCA. Notice that both
methods attain low reconstructed quality with one snapshot because at
this point the saturation is highest due to no attenuation. Notice that as
the number of snapshots increases the quality of images reconstruction
of the proposed methods improves.

5. Experimental setup

The proposed system uses a DMD-based implementation to emulate
the grayscale coded apertures, the experimental setup is a variation of
[27,28]. The structure of the system has two arms, the imaging arm,
and the integration arm. The imaging arm is composed of an objective
lens that focuses the scene in the image plane of the DMD. Elements in
the integration arm are rotated °45 , this comprises the relay lens, dis-
perser, and the detector. The emulation of the system requires a syn-
chronization control of grayscale coded aperture by setting correctly
the duty cycle of the DMD to generate grayscale patterns. In more de-
tail, the duty cycle in the DMD is defined in terms of percentage by

= ×D 100%P
I , where P is the width of the pulse that moves on the

micromirrors, and I is the integration time of the detector, emulating
Tm n, in Eq. (3). The grayscale coded aperture is calibrated to attain the
impulse response of the arrangement by using a white plate and a
monochromatic light along the spectral range of interest. The com-
pressive measurements are obtained using the real scene rather than the
white plate, and a broadband white light instead of the monochromatic
light.

The bottleneck in the experimentation occurs with the DMD

Fig. 9. Quality of reconstruction against the percentage of saturation.

Fig. 10. RGB reconstruction of Superballs and Glass-Tiles scenes using 8 snapshots, percentage of saturation of 10% and a compression ration of 50% for AGBCA the
average PSNR 22.2712 dB, and 20.9508 dB for the Superballs and Glass-Tiles, respectively. With a compression ration of 26%, the average PSNR for AGBBCA is 24.8842
dB and 22.1557 dB for the Superballs and Glass-Tiles, respectively.
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switching time 50 µs, and the integration time of the detector 100 ms.
An example of the synchronization control for two snapshots is depicted
in Fig. 12, where the first snapshot H0 is captured during 100 ms of the
FPA integration time, the corresponding duty cycle is 50% and trans-
mittance 0.5. In the second snapshot H1, the measurement is gathered
during 100 ms with a duty cycle of 25% and transmittances 0.25. In

addition, the pattern rate for the block-unblock code aperture is higher
1-bit – 22,727 Hz than the framerate for grayscale code apertures
pattern rates 8-bit – 290 Hz which bounds the grayscale levels of the
DMD to 256.

In the system, the 2D grayscale coded aperture is loaded in the
DMD. The dispersive element spreads the encoded light. Subsequently,

Fig. 11. Comparison of reconstructed images between AGBBCA and AGBCA for = {1, 3, 5, 7} snapshots with Superballs, and Glass-Tiles database, and using 20%
percentage of saturation in the compressive measurements. The first and third rows show reconstructed images using adaptive grayscale block-unblock CA. The
second and fourth rows depict reconstructed images via adaptive grayscale blue noise and block-unblock CA. As the number of snapshots is closer to 7 snapshot the
quality of image reconstruction of AGBBCA is higher than AGBCA.

Fig. 12. Two snapshot synchronization control. The first snapshot is captured during 100 ms corresponding to sensing matrix H0 which has a duty cycle of 50%. The
second snapshot is captured in the following 100 ms corresponding to the sensing matrix H1 with duty cycle 25%. The transmittance values are 0.5, and 0.25,
respectively.
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the compressive measurements are attained in the array detector. The
testbed implementation is synchronized such that the DMD settles the
grayscale coding patterns and the detector captures the measurements.
Afterwards, the DMD refreshes the coded aperture and the sensor
captures the next measurements. The mechanism is composed by an
AC254-100-A-ML objective lens (Thorlabs), a DLI4130 DMD
(DLInnovations) with spatial resolution of ×1024 768 and mirror pitch
size of 13.68 µm, a MAP1100100-A relay lens (Thorlabs), an Amici
Prism (Shanghai Optics) and a monochrome charged-coupled device
detector (AVT Stingray F-145B) with spatial resolution ×1388 1038 and
pixel size of 6.45 µm.

The two target scenes Bear-stars and Flower-stars [28] are used to
compare the proposed approach (AGBBCA) against the traditional
(AGBCA). The target scenes have a spatial resolution of ×128 128 and

=L 11 spectral bands, corresponding to the wavelength intervals
[423–436]; [437–448]; [449–463]; [464–479]; [480–499]; [500–521];
[522–546]; [547–577]; [578–618]; [619–673]; [674–700] nm. The
spectral resolution depends on the pitch of the sensor and the dispersion
function of the prism. The characterization of the double Amici dis-
persion prism function is similar to the used in [29]. The difference in
the bandwidth is due to the non-linearity of the prism.

The first column of Fig. 13 shows the two targets. The Fig. 13 shows
the spectral comparison for three spatial points in the Bear-stars and the
Flowers-starts scenes. In more detail, the first row of Fig. 13 depicts the
spectral signatures for the P1 [x = 14, y = 103] red bow tie, P2
[x = 113, y = 105] light-blue background, P3 [x = 39, y = 11] brown
bear head. The presented results for Bears-stars scene correspond to 40%
of saturation and using =K 5 snapshots. The second row in Fig. 13
shows the spectral signatures for the P1 [x = 127, y = 45] blue-light
background, P2 [x = 19, y = 117] orange petal of the flower in the
bottom-left corner, P3 [x = 47, y = 7] blue-light background. The
presented results for Flowers-stars correspond to 30% of saturation and
using =K 7 measurements. In each subplot, the black line corresponds
to the ground-truth which is measured using an Ocean Optics Flame
spectrometer. The captured spectral signature is compared against the
reconstruction of the proposed adaptive method (AGBBCA) represented
by the red line, for the bears-stars and the flower-starts scene, and the
reconstruction of the traditional random method (AGBCA) denoted by
the blue line.

6. Conclusions

The adaptive grayscale blue noise and block-unblock coded

apertures (AGBBCA) have been introduced in the CASSI system to re-
place the traditional adaptive grayscale block-unblock coded apertures
(AGBCA). The proposed architecture allows attenuating the effect of the
saturation of the FPA sensors while increasing the dynamic range of the
system. The designed adaptive grayscale blue noise and block-unblock
coded apertures outperform the adaptive grayscale block-unblock
coded apertures in up to 2 dB in the quality of image reconstruction.
Additionally, the proposed architecture has been implemented. The
experimental results prove the spatial-spectral accuracy of the im-
plemented design.
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