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Sensing a spectral image data cube has traditionally been a time-consuming task since it requires a scanning
process. In contrast, compressive spectral imaging (CSI) has attracted widespread interest since it requires fewer
samples than scanning systems to acquire the data cube, thus improving the sensing speed. CSI captures linear
projections of the scene, and then a reconstruction algorithm estimates the underlying scene. One notable CSI
architecture is the color coded aperture snapshot spectral imager (C-CASSI), which employs pixelated filter arrays
as the coding patterns to spatially and spectrally encode the incoming light. Up to date works on C-CASSI have
used non-adaptive color coded apertures. Non-adaptive sampling ignores prior information about the signal to
design the coding patterns. Therefore, this work proposes a method to adaptively design the color coded aperture,
such that the quality of image reconstruction is improved. In more detail, this work introduces a gradient thresh-
olding algorithm, which computes the consecutive color coded aperture from a rapidly reconstructed low-
resolution version of the data cube. The successive adaptive patterns enable recovering a data cube in the presence
of Gaussian noise with higher image quality. Real reconstructions and simulations evidence an improvement of up
to 3 dB in the quality of image reconstruction of the proposed method in comparison with state-of-the-art
non-adaptive techniques. © 2018 Optical Society of America

OCIS codes: (110.4234) Multispectral and hyperspectral imaging; (110.1085) Adaptive imaging; (170.1630) Coded aperture

imaging; (110.1758) Computational imaging.
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1. INTRODUCTION

Spectral imaging (SI) collects 3D spatiospectral information of
a scene, referred to as data cube, with two spatial dimensions
and one spectral dimension. Each spatial position along the
spectral axis is known as a spectral signature, which can be used
to determine the components present in the scene. SI has at-
tracted widespread interest due to the numerous applications,
for example, in cultural heritage for noninvasive characteriza-
tion and identification of the deterioration state of materials
[1], in medicine for the diagnosis of oral cancer [2], and in food
safety to detect pathogens [3]. Traditionally, SI systems rely on
scanning techniques to collect the data cube [4,5]. For instance,
push-broom is a line-scanning methodology that moves across a
spatial dimension to construct the data cube; by concatenating
2D spatio-spectral slices, whisk-broom is a point-scanning
method that moves across the two spatial dimensions capturing
each spectrum at a time; and the tunable spectral filter is a
wavelength-scanning methodology that constructs the data
cube by capturing each spectral band at a time. Collecting
a data cube using conventional scanning techniques is a

time-consuming effort, non-suitable for dynamic varying
targets. In contrast, snapshot systems are faster than scanning
systems because they capture all the information about the
scene at once. One of the first snapshot architectures is the
computer tomography imaging spectrometer (CTIS), which is
composed of a slit spectrometer, a kinoform grating, and a de-
tector array. When the linear dispersive element is replaced by a
2D disperser, it is possible to capture projections from different
angles. Therefore, tomography techniques are used to build an
SI. CTIS is a compact architecture, but its major disadvantage
is the difficulty in manufacturing the kinoform dispersing
elements [6]. Another snapshot architecture is multispectral
beam splitting (MSBS), which splits the light into different
color bands by means of a tandem of beam splitters, with the
intensity being registered in different sensors. This system,
however, is limited to five or six spectral bands due to difficul-
ties in dividing the beam or successive losses when several
filters are used [7]. A third widely used architecture is the snap-
shot hyperspectral imaging Fourier transform spectrometer
(SHIFT), based on two birefringent Normarski prisms behind
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an N ×M lenslet array, forming N ×M sub-images in the de-
tector array. SHIFT is easy to fabricate, but it is affected by the
parallax effect [8]. Lastly, one of the most recent snapshots
architectures is coded aperture snapshot spectral imaging
(CASSI), which is considered to be the first spectral imager
based on compressive sensing (CS) [9].

CASSI is a snapshot system that captures compressive pro-
jections of the data cube and then exploits CS theory concepts
to estimate the data cube [9–13]. In their cutting-edge paper
published in 2006, Candes, Tao, and Donoho demonstrate
that it is possible to recover an s-sparse n-dimensional signal
from s log�n� randomly chosen projections. For that reason,
the number of compressive measurements of CASSI are fewer
than that of conventional snapshot architectures. The main
elements in CASSI are the coded aperture, the dispersive
element, and the detector. In CASSI, the incoming light of
the scene is spatially modulated by the coded aperture and spec-
trally smeared by the dispersive element. The modulated and
smeared intensity is then multiplexed in the focal plane array
(FPA) forming the compressive measurements. Traditionally,
CASSI uses a block-unblock coded aperture that blocks or
transmits the whole spectral signature in a given pixel.
Recently, the color-patterned CASSI system (C-CASSI) gained
much attention due to its flexibility to filter the incoming light
per pixel [14–16] with the use of a color coded aperture (CCA).
A CCA is a 2D pixelated filter, which not only encodes the
scene spatially, but also spectrally. In comparison with block-
unblock coded apertures, CCA permits the selection of portion
of the spectrum that enters into the system. A CCA can be
understood as a 3D block-unblock coded aperture, where each
slice of the 3D coding patterns represents the filtering applied
to each spectral band. Figure 1 shows the equivalence between a
3D block-unblock coded aperture and the color coded aper-
ture. Each spectral filter is represented by a vector of block-
unblock elements, and the size of the vector denotes the
spectral resolution. Conventional C-CASSI uses low-pass,
bandpass, and high-pass filters to modulate the incoming light.

On the other hand, up-to-date work on C-CASSI has
focused on non-adaptive measurements [14,15]. With adaptive
measurements, we refer to the use of prior knowledge of the
data cube in the design of the entries of the CCA.
Specifically, during the capturing of K snapshots, the compres-
sive measurements y0, y1, � � � , yK −1 are sequentially captured
according to the structure of the scene, but capturing yl�1

depends on the previously gathered measurements yl.
Adaptive sensing has been used in the past in areas such as
high-dynamic-range imaging to improve the quantization res-
olution and to avoid saturation [17]. Between the adaptive
methodologies in SI there are three different approaches.
The first approach is based on dictionary learning [18], which
consists of learning a dictionary from the data, then computing
a singular value decomposition from the dictionary, and finally
using a small number of left singular vectors as the measure-
ment matrix H. The reconstruction is then performed with
a conventional CS signal recovery method. Adaptive sampling
using dictionary learning performs better than conventional CS
methods according to Ref. [18]. The adaptive sampling in the
wavelet domain developed by Averbuch et al. [19] shows that it
is possible to sample the wavelet coefficients with a digital
micromirror device (DMD) for the single pixel architecture.
This method acquires low-resolution measurements, and then,
based on the previous measurements and using the properties
of the wavelet structure, the algorithm adaptively extracts the
significant information corresponding to the edges of the im-
age. Adaptive sampling based on the Bayes method relies on the
inversion of the compressive measurements y � HΨ−1θ� ω
from a Bayesian perspective. The prior belief is based on the
idea that θ is of the signal a sparse representation in some basis
Ψ. The objective is to provide a posterior belief of the entries of
θ [20]. Specifically, Bayesian compressive sensing estimates the
prior information of the covariance matrix from the measure-
ment matrix and compressive measurements. Using that
knowledge, the next sensing matrix is inferred.

The fundamental characteristic of adaptive measurements is
that they are more outstandingly robust to Gaussian noise than
traditional non-adaptive measurements [21]. Furthermore, the
intuition in adaptive sampling is always to use previous knowl-
edge to adjust tunable parameters related with the CS acquis-
ition system, such as the covariance matrix or a low-resolution
reconstruction. The advantages of adaptive sampling include
coding according to the scene, robustness to noise, and better
quality of image reconstruction in comparison with conven-
tional non-adaptive sampling systems. This work presents a
gradient thresholding algorithm (GTA) to adaptively compute
a color coded aperture to improve the quality of image
reconstruction in C-CASSI. The intuition behind the adaptive
sampling strategy is to design the CCA according to the most
significant spectral signatures present in the scene. For that rea-
son, a low-resolution spectral data cube is estimated, which is
then interpolated to compute the second derivative of the spec-
tral signatures. The second derivative of each spectral signature
is then thresholded to detect the local maximum of each spec-
tral signature. The transmittance of the CCA is established
higher in the region of local maximum than in the local mini-
mum in order to promote the spectral borders. The intuition
here is that adaptively sensing the spectral borders improves the
quality of image reconstruction.

This paper is divided into three sections: Section 2 gives
a brief overview of the methods, specifically, the mathematical
model of C-CASSI, the non-adaptive matrix representation of
the sampling phenomenon, the proposed adaptive system,
and the gradient thresholding algorithm (GTA). In Section 3,

Fig. 1. Equivalence between 2D color coded aperture and 3D
block-unblock coded aperture. The colored filters array is composed
of spectral filters that modulate the transmittance of the incoming light
in the system.
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simulation results show that the proposed adaptive C-CASSI
outperforms the non-adaptive C-CASSI by up to 3 dB in terms
of peak signal-to-noise ratio (PSNR). In Section 4, an imple-
mentation of the adaptive C-CASSI along with reconstruction
of real experimental data is shown, comparing the adaptive ver-
sus the conventional non-adaptive methodologies.

2. METHODS

A. Color Coded Aperture Snapshot Spectral Imaging
System
The continuous mathematical model of C-CASSI is given in
Eq. (1). The color coded aperture T �x, y, λ� modulates the in-
coming light F�x, y, λ�, where �x, y� represent the spatial coor-
dinates and λ the wavelength. The coded density is then spread
out by the dispersive element and captured in the sensor as
Y �x, y�

�
ZZZ

T �x 0, y 0, λ�F �x 0, y 0, λ�h�x 0 − S�λ� − x, y 0 − y�dx 0dy 0dλ,

(1)

where h�x 0 − S�λ� − x, y 0 − y� denotes the optical impulse
response of the system, with S�λ� being the dispersion gener-
ated by the prism. Each discrete voxel of the data cube, denoted
as F ijk, can be represented from the continuous source as

F ijk �
Z

λk�1

λk

Z �j�1�Δ

jΔ

Z �i�1�Δ

iΔ
F �x, y, λ�dxdydλ

� cijk · F �xi, yj, γk�, (2)

for i, j � 0,…,N − 1, k � 0,…, L − 1 where cijk denotes the
quadrature weight, and �xi, yj, γk� index the coordinates of the
�i, j, k�th voxel, where i and j index the spatial coordinates and
k the spectral axis. Let Δ be the pixel pitch of the detector and
let λk the spectral discretization. The range of the kth spectral
band is given by �λk, λk�1� where λk is the solution to the equa-
tion S�λk�1� − S�λk� � Δ. Let T l

i,j,k ∈ f0, 1g be the discretiza-
tion of the color coded aperture T l�x, y, λ� used in the l-th
snapshot, l � 0,…,K − 1, such that

T l�x, y, λ� �
X
ijk

T l
ijk rect

�
x
Δ
− i −

1

2
,
y
Δ
− j −

1

2
,
λ

σk
− k −

1

2

�
,

(3)

where Δ is the side length of the coded aperture, and
σk � λk�1 − λk. Notice that the index i is in the direction

orthogonal to dispersion, and j is along the axis of dispersion.
As shown in Eq. (3), the color coded aperture can be regarded
as a 3D structure T l

ijk, whereas the traditional block-unblock

coded aperture is a 2D structure. The lth discretized compres-
sive measurement in C-CASSI can then be written as

Y l
i,l �

XL−1
k�0

F i,�l�k�,kT l
i,�l�k�,k � ωi,l , (4)

where Y l
i,l is the intensity in the �i, l�th sensor pixel, where

l ∈ f0, � � � ,N � L − 1g, and ωi,l is the Gaussian noise in the
�i, l�th position, i � 0, � � � ,N − 1; notice that index l is along
the axis of dispersion. The measurements in each snapshot can
be arranged as Yl ∈ RN×�N�L−1�. Similarly, the underlying
scene can be denoted as F ∈ RN×N×L, and T ∈ RN×N×L is a
binary three-dimensional array modeling the color coded aper-
ture. The compressive measurements in C-CASSI can then be
expressed in matrix form as

yl � Hlf � ω, (5)

where Hl stands for the lth sensing matrix, f denotes the vec-
torization of the underlying data cube F, and ω is the vecto-
rization of the Gaussian noise. The vectorization of the matrix
F is given by �f k�lp � Fl� p−rN �rk, for p � 0, � � � ,N 2 − 1,
r � bp∕N c. Equation (5) can be rewritten as

y �

2
666664

diag�Hl
0� diag�00N �1�×N 2� … diag�00N �L−1�×N 2�

diag�Hl
1� …

. .
.

diag�00N �L−1�×N 2� diag�00N �L−2�×N 2� … diag�Hl−1
L−1�

3
777775

zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{Hl

2
6664

f 0
f 1
..
.

f L−1

3
7775� ω, (6)

where diag�Hl
k � is an N 2 × N 2 diagonal matrix whose entries

are the elements of the lth vectorized color coded aperture of
the kth spectral band. Figure 2 depicts an example of
the sensing matrix H � ��H0�T , �H1�T ,…�HK −1�T �T , for
K � 2, N � 6, and L � 4. Notice that H can be constructed
as a sparse matrix since it is mostly populated with zeros; thus,
its very large dimensions are easily manageable. tlk is a vector
that represents the non-zero elements in the kth spectral band
and the lth snapshot. The black squares represent blocking
(zero-valued) elements, and the green, magenta, red, and yellow
squares represent transmissive (one-valued) elements at the
respective wavelengths.

B. Adaptive Color Coded Aperture
Figure 3 depicts the scheme of adaptive C-CASSI. In detail, the
optical architecture inside the green dotted box corresponds to
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the C-CASSI system. The red dashed box denotes the
proposed adaptive scheme that corresponds to the steps 3–7 of
Algorithm 1. The gradient thresholding algorithm (GTA)
algorithm was developed in order to design the CCA used
in the next projection of the adaptive C-CASSI. The goal of
the GTA algorithm is to enhance the spectral borders of the
reconstructed data cube, with the intuition that adaptively
sensing the spectral borders improves the quality of image
reconstruction. In particular, the steps of the proposed adaptive
system are: low-resolution reconstruction, interpolation of the
low-resolution data cube, computation of the spectral gradient,
thresholding of the spectral gradient, and adjustment of the
transmittance of the spectral filter. The inputs of the GTA
algorithm are the initial compressive measurements y0 and
the initial sensing matrix H0.

The first step denoted as (I) in Fig. 3 is the computation of a
low-resolution data cube from y0 and H0. This low-resolution
estimation is done, since it is difficult to extract information
about the scene from the compressed measurement directly,
and a full-resolution data cube reconstruction demands higher
computational complexity. Some other works extract borders
by employing side information from a second sensor placed
aside the sensing device [22]. Although this reconstruction is
not in real time, this penalty is tolerable for the adaptive design

of CCA. GTA exploits the low-resolution data cube, which
provides prior information about the underlying scene f .
Formally, let f lL � Df , be the vectorized low-resolution image
where D denotes the decimation matrix and f identifies the
underlying scene. The low-resolution version f̂ lL is obtained
by solving

f̂ lL � ΨL

�
arg min

θL

∥y −Hl
LΨLθL∥

2

2 � τ∥θL∥
1

� λ∥�C − I��ΨLθL�∥22
�
, (7)

whereHl
L � HlD denotes the decimated sensing matrix,ΨL is

the representation basis, and θL is the vectorization of a sparse
vector for the low-resolution reconstruction, I is the identity
matrix, C is a Gaussian filter to promote smoothness, and τ,
λ are regularization constants.

This low-resolution data cube F̂ 0
L is then interpolated to ob-

tain a high-resolution data cube F̂ 0
H , as shown in Fig. 3(II). In

particular, step 4 of the GTA algorithm performs the interpo-
lation of the low-resolution data cube by using f̂ lH ← Pf̂ lL
where the interpolator P is a bilinear interpolator attaining a
high-resolution data cube f̂ lH . In the following step, the spectral
gradient Sl is computed, as depicted in Fig. 3(III). More pre-
cisely, Sl is the discrete second derivative of each spectral sig-
nature, also referred to as the spectral borders. The spectral
gradient computation of the high-resolution data cube is per-
formed as sl ← B2 f̂ lH (line 5, GTA), where l refers to the lth

snapshot, B2 computes the second derivative of the spectral sig-
nature, with B ∈ RN 2L×N 2L being the gradient matrix given by

B � G ⊗ I, (8)

where I ∈ RN 2×N 2
is an identity matrix, ⊗ is the Kronecker

product, and G ∈ RL×L is denoted as

G�

0
BBBBBBBBBBBBB@

−1 1 0 0 � � � 0 0 0 0

−0.5 0 0.5 0 � � � 0 0 0 0

0 −0.5 0 0.5 � � � 0 0 0 0

..

. ..
. ..

. ..
. . .

. ..
. ..

. ..
. ..

.

0 0 0 0 . .
.

−0.5 0 0.5 0

0 0 0 0 � � � 0 −0.5 0 0.5

0 0 0 0 � � � 0 0 −1 1

1
CCCCCCCCCCCCCA

:

(9)

Fig. 2. Sensing matrix H where K � 2, N � 6, and L � 4, and
V � N �N � L − 1� � 54. Black squares represent a zero-value
element (blocking light). Green, magenta, red, and yellow squares re-
present one-value element (unblocking light) in the corresponding
spectral band λ0, λ1, λ2, and λ3.

Fig. 3. System layout of the adaptive C-CASSI. The scheme depicts two snapshots of C-CASSI. In the first snapshot, the color coded aperture Tl

is generated randomly. In the second snapshot, the color coded aperture T l�1�x, y, λ� is adaptively designed by the GTA, (I) using as prior in-
formation a low-resolution reconstruction FlL, (II) the reconstruction is interpolated F

l
H , (III) then the spectral edges of the interpolated data cube are

computed Sl, (IV) the gradient is thresholded Ql, and (V) the transmittance is adjusted T l�1�x, y, λ�. This process repeats for the subsequent
snapshots.
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The matrix G computes the central differences in the internal
data points and the single-side differences along the edges. Each
row of the matrix G computes the pixel-wise central difference
of the spectral signature [23]. The matrix B computes the cen-
tral differences for all the spectral signatures in the data cube.
Similarly, notice that B2 finds the second derivative of each
spectral signature of the high-resolution data cube by calculat-
ing B2 f̂ lH . Therefore, the gradient sl is referred to as the spec-
tral borders. The next step is to compute the thresholding of the
gradient to identify the maximum Ql and minimum local
spectral intensity regions 1 −Ql, where Ql is a binary cube
with ones in the maximum spectrum, and 1 −Ql is a binary
cube with ones in the minimum spectrum, i.e. the negative of
Ql. The thresholding of the gradient is performed according to
the logical operation ql ← �sl ⪯ 0� (line 6, GTA), where ql
is the vectorization of Q , ⪯ is the element-wise inequality, sl is
the computed gradient, and 0 is an all-zero vector. The thresh-
olding sl ⪯ 0 splits the spectral intensity profile in a maximum
local spectral intensity region ql and a minimum local spectral
intensity region 1 − ql, which corresponds to the complement
of ql. This approach enhances the spectral borders across each
spectral profile by sampling with different transmittances the
high and low spectral intensities. The transmittance is the per-
centage of light that hits the FPA. The transmittance is set
according to the maximum and minimum spectral intensities.

Algorithm 1: GTA gradient thresholding algorithm.

Require: y ← �y0�T , H ← �H0�T
Ensure: f̂
1: function GTA (y, H, B)
2: for l ← 0,K − 1 do

3: f̂ lL ← ΨL

�
arg minθL∥y −HLΨLθL∥22

�τ∥θL∥1 � λ∥�C − I��ΨLθL�∥22
�

▹ Low-resolution

4: f̂ lH ← Pf̂ lL ▹ Interpolation
5: sl ← B2 f̂lH ▹ Compute gradient
6: ql ← �sl ⪯ 0� ▹ Thresholding
7: rl ← ql ⊙ rld � �1 − ql� ⊙ rlu , ▹ Transmittance
8: for n ← 0,N 2L − 1 do
9: k � bn∕N 2c, l � nmodN 2

10: �rlk �l ← rln ▹ Rearrange r
11: for m ← 0,K V − 1 do
12: if m − lmV � n − kn�N 2 − N � then
13: �Hl�1

m �n ← �rlm
kn
�
m−lmv−knN

▹ Compute H
14: else
15: �Hl�1

m �n ← 0
16: yl�1 ← Hl�1f ▹Next snapshot
17: y ← ��y0�T ,…�yK −1�T �T
18: H ← ��H0�T ,…�HK −1�T �T
19: return f̂ ← Ψ�arg minθ∥y −HΨθ∥22 � τ∥θ∥1�

The adjustment of transmittance denoted as Rl shown in
Fig. 3(V) sets a higher transmittance ηd in the local maximum
intensity region Ql, and a lower transmittance ηu in the local
minimum intensity region 1 −Ql, where ηd ≥ ηu. In step 7 of
GTA, a vectorization version of the adaptive color coded aper-
ture is computed according to rl ← ql ⊙ rld � �1 − ql� ⊙ rlu ,
where rld and rlu are vectors with binary entries and

transmittance functions ηd �l� and ηu�l�, respectively, depen-
dent on the number of snapshots as the following:

rld ∼
�
Ber�ηd �l� � 0.5�, if l � 0
Ber�ηd �l� � 2∕�l� 3��, otherwise,

(10)

rlu ∼
�
Ber�ηu�l� � 0.5�, if l � 0
Ber�ηu�l� � 1∕�l� 1��, otherwise: (11)

This step represents the adjustment of the transmittance. The
adjustment in transmittance emphasizes the spectral borders
Sl, where Ber�·� denotes the Bernoulli distribution. The intu-
ition behind these transmittance functions builds on a state-of-
the-art transmittance criterion for color coded apertures [24].
In particular, rlu is a transmittance criterion for color coded
apertures for l > 0, defined as the inverse of the number of
snapshots. This criterion reduces the transmittance of the color
coded aperture as the number of snapshots increases. In order
to promote the spectral borders, two different transmittances
are used in this paper, such that rlu ≤ rld . The values of these
transmittance functions are close to those theoretically found in
Ref. [24] but were found through experimentation in this pa-
per. In particular, we set the transmittance rld to be higher than
rlu because we want to sample the local maximum spectral in-
tensity region ql more. This in turn permits us to sample the
higher intensities more to sharpen the profiles of the spectral
bands [25]. Rl then enhances the spectral borders of the recon-
structed data cube by increasing the transmittance in the abrupt
spectral intensity changes of the interpolated data cube. The
transmittance parameters of rld , r

l
u were found after exhaustive

search in the range between 0.1 and 0.9.
According to Eq. (10), for the first snapshot, the sampling

vector rd ∼ Ber�ηd �l� � 0.5� has a transmittance function
ηd �l� � 0.5 for the local maximum spectral intensity region
ql. When the number of snapshots is l > 0, the sampling vec-
tor is given by rd ∼ Ber�ηd �l� � 2∕�l� 3�� with transmit-
tance function denoted by ηd �l� � 2∕�l� 3�. Also, as
stated in Eq. (11), for the first snapshot, the sampling vector
ru ∼ Ber�ηu�l� � 0.5� has a transmittance ηu�l� � 0.5 for the
local minimum spectra intensity 1 − ql. When the number of
snapshots is l > 0, the sampling vector is ru ∼ Ber�ηu�l� �
1∕�l� 1��, the transmittance function of which is ηu�l� �
1∕�l� 1�. The intuition behind the transmittance adjustment
comes from Gonzalez andWoods, who classified the edge mod-
els according to intensity profiles [25]. In general, it is known
that digital images are contaminated with blurring due to the
focusing mechanism and noise because of the electronic com-
ponents. The two most accurate edge models are the intensity
ramp profile and the roof edge profile [25]. The transmittance
adjustment of GTA is designed based on these edge models.
The output of the algorithm is the subsequent filter array
T �x, y, λ�l�1 shown in Fig. 3(VI). Particularly, the proposed
design increases the transmittance in some areas of H and
decreases it in others. Let Hmn denote each entry of H, if
Hmn � 1 the light gets into the system and if Hmn � 0
the light is filtered out from reaching the FPA, where
m � 0,…,K �N � L − 1� − 1; n � 0,…,N 2L − 1.

The last steps of the algorithm rearrange the vectoriza-
tion version of rl to its matrix version Hl�1. In more detail,
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in step 10, the vector rl is rearranged as the 2D kth plane ac-
cording to �rlk �l ← rln . Afterwards, in step 13, the vectorization
of the color coded aperture rl is stacked in the sensing matrix
Hl according to �Hl�1

m �n ← �rlm
kn
�
m−lmv−knN

, kn � bn∕N 2c,
lm � bm∕V c, lm ∈ f0,…,K − 1g. In step 16, the adaptive
snapshot is captured as yl�1 ← Hl�1f . In step 19, the output
of algorithm 1 is the approximation f̂ . At each snapshot, the
GTA algorithm is computed because the quality of the low-
resolution data cube increases with each additional snapshot.
Examples of the coding patterns designed by the proposed
algorithm are depicted in Fig. 4. These coding patterns show
the color coded aperture along a set of axial slices of the 3D
block-unblock representation. Specifically, Fig. 4 depicts a
comparison between non-adaptive CCA and adaptive CCA.
In detail, the first row depicts the non-adaptive color coded
aperture. The second, third, and fourth rows show the adaptive
coded apertures for three different spectral scenes. The first row
depicts non-adaptive CCA. The second through fourth rows of
Fig. 4 show the adaptive CCA. The first column depicts the
CCAs. The second through fourth columns show 3 out of
12 axial slices of the block-unblock representation. The total
number of axial slices is the same as the number of spectral
bands, in this case L � 12. Notice that each color coded aper-
ture is highly correlated with the corresponding scene. The
scenes are illustrated in Fig. 5. The adaptive filter arrays resem-
ble the spectral components of the corresponding scene.

3. SIMULATIONS

To assess the capabilities of the adaptive C-CASSI, it is com-
pared with the non-adaptive C-CASSI. A critical parameter in
the simulations is the transmittance, which is traditionally set to
50% in non-adaptive C-CASSI. In adaptive C-CASSI, the
transmittance is set according to two important regions, local
maximum ql and local minimum 1 − ql spectral intensity re-
gions. This process emphasizes the spectral borders sl, accord-
ing to the intensity profile edge model [25]. The GTA
algorithm 1 uses transmittance functions that reduce the
transmittance of the color coded apertures as the number of
snapshots increases, ηd �l�, ηu�l�, where ηd �l� ≥ ηu�l�.
Equations (10) and (11) determine the transmittance in
the adaptive approach. GTA algorithm 1 uses the Gradient
Projection for Sparse Reconstruction (GPSR) algorithm [26]
to solve step 3 and step 19. The type of GPSR used in this
paper is the Barzilai–Borwein gradient projection (GPSR-BB).
For the reconstruction, the basis representation Ψ is set to be
the Kronecker product of three bases, Ψ � Ψ1 ⊗ Ψ2 ⊗ Ψ3.
The 2D spatial representation basis Ψ2D � Ψ1 ⊗ Ψ2 is the
2D-wavelet symmlet 8 basis, and the spectral sparsifier is
the 1D cosine transform basis Ψ3. The input measurements
�y� in the GTA algorithm were acquired using Eq. (5), includ-
ing a Gaussian noise with SNR � 10 dB. The GTA algorithm
was evaluated with three scenes shown in Fig. 5. The first data-
base is a portion of scene 5 from [27], [Fig. 5(a)]; the second
database is the chart and stuffed toys from [28], [Fig. 5(b)]; and
the third database is the feathers also from [28], [Fig. 5(c)].
Each spectral data cube has 12 bands that span between
400 and 700 nm, and the spatial resolution is 512 × 512 pixels.

Fig. 4. Comparison between non-adaptive and adaptive color coded
apertures when K � 6. The top row depicts non-adaptive random
patterns. The second, third, and fourth rows show adaptively designed
apertures, resulting from the use of the proposed algorithm, highly
correlated with the spectral bands of each scene. (First column)
CCA; (second column) three slices of the 3D block-unblock
representation.

(c)

(a)

(b)

Fig. 5. Three spectral scenes are used to test the proposed adaptive
approach. These scenes have a resolution of 512 × 512 × 12 pixels, and
they span a spectral range between 400 and 700 nm. Figures (a)–(c) de-
pict 12 spectral bands with the corresponding central wavelength of
the database of scene 5 from Ref. [27], chart and stuffed toys, and
feathers from Ref. [28].
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Figures 5(a)–5(c) depict 12 spectral bands of scene 5 in
Ref. [27], chart and stuffed toys, and feathers in Ref. [28].
Each spectral band has its corresponding central wavelengths.

Figure 6 illustrates a comparison of the averaged PSNR
against the number of snapshots for each database. Each sub-
plot compares the quality of image reconstruction for the non-
adaptive C-CASSI and the adaptive C-CASSI. Each column of
the figure depicts experiments using scene 5, chart and stuffed
toy, and the feathers database, respectively. Each row refers to a
certain signal-to-noise ratio (SNR) scenario for each database;
the corresponding SNR for each row is 10, 20, 50, and 100 dB,
respectively. Note that when the number of snapshots is less
than or equal to two, the transmittance is 50% for both ap-
proaches; therefore, at that snapshot level, there is not a signifi-
cant difference. In contrast, after the second snapshot, the
adaptive method overcomes the traditional approach. The sim-
ulations reveal that in the presence of noise, the traditional
approach is outperformed by the proposed adaptive approach
in up to 2 dB. The results highlight the importance of adapting
the subsequent colored apertures according to the previous
information gathered in the compressive measurements. A re-
markable result from the simulations is that the non-adaptive
C-CASSI is less robust to Gaussian noise than the proposed
adaptive C-CASSI. In order to show the scalability of the
adaptive C-CASSI, Fig. 7 shows the results of the quality of

image reconstruction against the number of snapshots when
the databases exhibit L � 24 spectral bands. The simulations
show that the adaptive C-CASSI overcomes the non-adaptive
up to 3 dB. In order to compare the traditional method and the
proposed adaptive method, the PSNR is used to measure the
quality of image reconstruction. Figure 8 shows a zoomed
version of the toy and the stuff scene. In the first row, it is
depicted as the original scene. The second row shows the result
of the non-adaptive C-CASSI, and the third row shows the re-
sult of the proposed adaptive method. Four out of the 12 wave-
bands are shown with their corresponding central wavelength
of 430, 480, 560, and 650 nm along with the attained PSNR.
The PSNR of the reconstructed bands with the non-adaptive
approach is lower in comparison with the adaptive C-CASSI. In
fact, the averaged PSNR across the 12 spectral bands is 33.5 dB
for the non-adaptive C-CASSI and 35.6 dB for the adaptive
C-CASSI. To test the fidelity of the spectral reconstructions,
three reference spectral signatures denoted as P1, P2, and
P3 are compared against the reconstructed spectral signatures
of non-adaptive and adaptive C-CASSI in Fig. 9. The root
mean square error between the reference and the reconstruction
are included in each subfigure to improve the understanding of
the results. These results revealed that more similarity exists
between the reference and the reconstructed spectral signatures
using adaptive C-CASSI.

Fig. 7. Averaged PSNR against the number of snapshots for each
spectral scene with L � 24 spectral bands and capturing K � 12
snapshots. The simulations include Gaussian noise with SNR �
10 dB in the compressive measurements.

Fig. 8. Zoomed reconstruction of a subset of spectral bands using
K � 6 snapshots for non-adaptive C-CASSI with average PSNR
across the spectral bands 33.5 dB and compression ratio of 50%,
and adaptive C-CASSI with average PSNR 35.6 dB and compression
ratio of 80%. In addition, the PSNR for the specific band is indicated.

Fig. 6. Averaged PSNR against the number of snapshots for each
spectral scene (columns of the image), under four different SNR sce-
narios 10, 20, 50, and 100 dB in the compressive measurements (rows
of the image).
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4. EXPERIMENTAL SETUP

To experimentally prove the advantage of the adaptive design
against the traditional system, the C-CASSI was assembled in
our laboratory as depicted in Fig. 10, in accordance with [15]
using a DMD-based implementation of color coded apertures.
The optical scheme depicts two arms: the imaging arm and the
integration arm. In the imaging arm, the imaging lens focuses
the light into the DMD. Due to the DMD rotation angle of

45° relative to the detector pixels, the alignment of the optical
elements is critical. In order to correct for the inclination of the
DMD, the elements in the integration arm of the setup are
rotated 45°, including the relay lens, the filter wheel, the prism,
and the FPA. The apparatus is made up of (1) an AC254-100-
A-ML objective lens (Thorlabs), (2) a DLI4130 DMD
(DLInnovations) with spatial resolution of 1024 × 768 and
mirror pitch size of 13.68 μm, (3) a MAP10100100-A relay
lens (Thorlabs), (4) an Amici Prism (Shanghai Optics), and
(5) a monochrome charged-coupled device detector (AVT
Stingray F-145B) with spatial resolution 1388 × 1038 and
pitch size of 6.45 μm. The emulation of the CCA using the
DMD and the set of optical filters is as follows: each CCA is
mapped to a 3D array of block-unblock coded apertures paired
with the corresponding set of optical filters, as described in
Ref. [15], thus emulating T l

ijk in Eq. (3). Each pair of filter
and block-unblock coded aperture is calibrated to characterize
the impulse response of the system, which uses as input a
monochromatic light and a white plate as the target. The com-
pressive measurements are obtained using as a target the real
scene instead of the white plate and replacing the monochro-
matic light with a broadband white light. If each band is set to
be encoded independently, a single shot acquisition with L
bands will require L switches in the DMD and L rotations
of the filter wheel. Experimentally, the DMD switching time
is ∼50 μs, and the rotation time of the filter wheel is ∼50 ms,
being the latter the bottleneck. Therefore, the largest integra-
tion time for a single shot is bounded by 50 L ms. Two target
scenes were used to evaluate the quality of image reconstruction
of the adaptive C-CASSI against non-adaptive C-CASSI.
Figure 11 depicts the two targets. In this setup, the 3D block-
unblock representation of CCA is loaded in the DMD, and
each 2D slice is paired with the corresponding color filter
placed in the filter wheel. Afterwards, the measurements is
obtained by adding the 2D measurements. The experimental
setup is synchronized such that the DMD sets the pattern and
the sensor captures the projection. After that, the DMD
updates the coded aperture, and the filter wheel rotates.
Subsequently, the detector measures the next projection.
The first target is the bear-stars scene (left), and the second tar-
get is the flower-stars scene (right). The spatial resolution of the
target scenes is 128 × 128. In the characterization of the Amici
prism, L � 11 spectral bands are resolved. The corresponding
wavelength intervals are: {423–436}; {437–448}; {449–463};
{464–479}; {480–499}; {500–521}; {522–546}; {547–577};
{578–618}; {619–673}; {674–700} nm. Due to the nonlinear

Fig. 9. Spectral fidelity analysis at three points (P1, P2, P3) for each
scene. The reference spectral signature and the reconstructed spectral
signatures of the non-adaptive and adaptive C-CASSI are compared.
Note that the spectral signatures of the proposed adaptive C-CASSI
approach are closer to the reference spectral signature than the
traditional non-adaptive C-CASSI.

Fig. 10. Optical scheme of the DMD filter-wheel-based C-CASSI.
In the imaging arm, the imaging lens focuses the scene in the DMD.
In the integration arm, the relay lens focuses the encoded light by the
DMD into the sensor after it is filtered by the filter wheel and dis-
persed by the prism. The synchronization control coordinates the
change of filters of the filter wheel, the DMD switching, and integra-
tion of the sensor. Fig. 11. Bear-stars scene (left). Flower-stars scene (right).
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dispersion of the prism, the spectral bandwidths are different.
In order to compare the reconstructed spectral signatures using
the prism with the spectral signatures obtained with the com-
mercial spectrometer, we select the values in the spectrometer
readout corresponding to the central wavelength of the men-
tioned intervals. Figure 12 shows an RGB representation of
the reconstructed data cubes of the bear-stars scene using
K � 4 snapshots (first row) and the flower-stars scene (second
row). The non-adaptive C-CASSI using random color coded
aperture is shown in Figs. 12(a) and 12(c), and the proposed
adaptive C-CASSI in Figs. 12(b) and 12(d). As can be ob-
served, the proposed procedure improves the quality of image
reconstruction. Four zoomed details of the scene are depicted in
the insets of each subfigure, in Figs. 12(a) and 12(b), inset (I)
the right of the bow tie, (II) the bear’s nose, (III) the center bow
tie, and (IV) the yellow star. Regarding the second scene,
Fig. 12(c), 12(d) includes (I) the white space between two flow-
ers, (II) the center of a flower in the bottom-right corner, (III)
the pink star, and (IV) the light-blue background. In these
zoomed details of the scene the improvement in the quality
of image reconstruction of the proposed method is evident.
Notice that the diagonal lines crossing the stars are more ap-
preciable in the reconstruction with adaptive C-CASSI than
in traditional C-CASSI due to the higher transmittance in
the local maximum region in comparison with the local mini-
mum region. Figure 13 represents a comparison of the recon-
structed spectral bands of the bear scene using non-adaptive
C-CASSI and adaptive C-CASSI with K � 4 snapshots for
the spectral bands λ6 � 534, λ7 � 562, and λ8 � 597 nm.
In more detail, the first row depicts the spectral reconstruction

using non-adaptive C-CASSI, and the second row shows the
spectral reconstruction using adaptive C-CASSI. The same four
zoomed details of the scene are depicted for each spectral band.
In particular, notice for the proposed approach the better spec-
tral quality in diagonal lines of zoomed details (I) and (IV). To
test the fidelity of the spectral reconstruction, Fig. 14 shows the
spectral signatures for three spatial positions P1, P2, P3 of the
bear-stars scene for K � 3 snapshots, and the flower-star scene
for K � 3 snapshots. For the scene in the top row, the point P1
corresponds to light-blue background, the P2 represents the red
bow tie, and P3 denotes the yellow star. For the scene in the
bottom row, the spatial points correspond to P1, the light-blue
background; P2, the dark-red petal of the flower in the top-left
corner; and P3, the orange petal of the flower in the bottom-
right corner. In each spatial point the light is measured using an
Ocean Optics Flame spectrometer. The resulting spectral
signature is compared with the spectral signature for the recon-
structions using the non-adaptive C-CASSI and the adaptive
C-CASSI. The three subplots show the improvement in the
quality of image reconstruction of the proposed adaptive
method in the bear-stars scene and flower-stars scene in
comparison with the traditional random method.

5. DISCUSSION

In this section, the proposed adaptive C-CASSI design is com-
pared against the non-adaptive C-CASSI in terms of four
aspects. The first aspect is reconstruction accuracy, in which
the simulation and experimental results show that the
reconstruction accuracy of adaptive C-CASSI is better than

Fig. 12. RGB reconstruction of the bear-stars scene (first row), and the flowers-start scene (second row), using K � 4 snapshots with [(a) and (c)]
the traditional C-CASSI and [(b) and (d)] the adaptive C-CASSI. Four zoomed sections (I)–(IV) are shown for each subfigure in order to easily
appreciate the improvements.
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the non-adaptive C-CASSI. The second aspect is the optical
light efficiency. In this respect, the non-adaptive C-CASSI uses
an optical efficiency of 50%, while the proposed method ex-
hibits two different transmittances that depend on the number
of shots. The transmittance function for local minimum region
is ηu�l� � 1∕�l� 1�, and the transmittance for local maxi-
mum region is ηd �l� � 2∕�l� 3�, which are smaller than
50% for l > 2. In terms of throughput of the system, the

adaptive C-CASSI is less light efficient than non-adaptive
C-CASSI due to the lower transmittance. However, adaptive
C-CASSI overcomes the quality of image reconstruction of
non-adaptive C-CASSI using less light. The third aspect is
the robustness to noise. The proposed adaptive system tolerates
the Gaussian noise better than non-adaptive C-CASSI. The
simulations and experimental results show that non-adaptive
C-CASSI is less robust to noise than adaptive C-CASSI.

Fig. 14. Spectral signatures for three different spatial points in the target scenes, using K � 3. (Top row, column 1) three spatial points in the
bear-stars scene. (Top row, column 2) P1 point in the light-blue background. (Top row, column 3) P2 point in the red bow tie. (Top row, column 4)
P3 point in the yellow star. (Bottom row, column 1) selection of the three spatial points in the flower-stars scene. (Bottom row, column 2) P1 point
in the light-blue background. (Bottom row, column 3) P2 point in the dark-red flower petal. (Bottom row, column 4) P3 point in the orange flower
petal.

Fig. 13. Reconstruction bear-stars spectral scene at wavelengths λ6 � 534 nm, λ7 � 562 nm, and λ8 � 597 nm. In the right of each spectral
band there are shown four zoomed sections (I)–(IV). The first row depicts the recovered spectral band with traditional C-CASSI using K � 4
snapshots, whereas the second row shows the spectral reconstruction with adaptive C-CASSI.
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The tolerance to noise is due to the steps 4–7 of the GTA
algorithm, which not only enhance spectral edges but reduce
the noise. The fourth aspect of the designed adaptive CCA
is dealing with the interspersion problem. The interspersion
problem of traditional CASSI consists of an increase of the
spatial-spectral overlap at the detector when the number of
spectral bands increases; then it entails a nearly intractable
reconstruction problem. The adaptively designed CCA allevi-
ates the interspersion problem since the spectral filtering
entailed by the CCA reduces the overlap, or multiplexing,
per pixel in the detector.

6. CONCLUSIONS

This paper has shown the benefits of the adaptive design of a
color coded aperture in C-CASSI. In particular, the coding de-
sign of the CCA adaptively promotes the spectral borders of the
scene, and the resulting CCA is adjusted to the scene. The sim-
ulations and experimental implementation show the feasibility
of an adaptive C-CASSI system as an alternative to non-
adaptive C-CASSI with the advantage of improved quality
in image reconstruction. Our proposed architecture takes ad-
vantage of the previous compressive measurements and sensing
matrix to compute the following coded aperture relying on a
low-resolution reconstruction data. The key feature of adaptive
C-CASSI is the subsequent design of the coded apertures in
relation to the spectral edges of the low-resolution data cube.
The results of this study imply that the designed coded aper-
tures not only improve the quality of image reconstruction but
deal better with Gaussian noise. The simulations and numerical
analysis support the idea that the proposed approach outper-
forms the traditional method by up to 3 dB when the measure-
ments are contaminated with a noise of SNR � 10 dB.
In addition, experimental reconstructions evidence the im-
provement of the proposed adaptive color coded aperture in
comparison with the traditional non-adaptive colored random
apertures.

Funding. Departamento Administrativo de Ciencia,
Tecnología e Innovación (COLCIENCIAS) (727);
Universidad Industrial de Santander (UIS) (2345).

Acknowledgment. Nelson Diaz and Hoover Rueda
are supported by Colciencias and Fulbright scholarships,
respectively. We thank the members of the optics lab from
HDSP-UIS for their help with testbed experiments.

REFERENCES
1. F. G. France, “Advanced spectral imaging for noninvasive microanaly-

sis of cultural heritage materials: review of application to documents
in the U.S. Library of Congress,” Appl. Spectrosc. 65, 565–574
(2011).

2. N. Bedard, R. A. Schwarz, A. Hu, V. Bhattar, J. Howe, M. D. Williams,
A. M. Gillenwater, R. Richards-Kortum, and T. S. Tkaczyk,
“Multimodal snapshot spectral imaging for oral cancer diagnostics:
a pilot study,” Biomed. Opt. Express 4, 938–949 (2013).

3. V. C. Coffey, “Hyperspectral imaging for safety and security,” Opt.
Photon. News 26(10), 26–33 (2015).

4. R. G. Sellar and G. D. Boreman, “Classification of imaging spectrom-
eters for remote sensing applications,” Opt. Eng. 44, 013602
(2005).

5. R. G. Sellar and G. D. Boreman, “Comparison of relative signal-to-
noise ratios of different classes of imaging spectrometer,” Appl.
Opt. 44, 1614–1624 (2005).

6. T. Okamoto and I. Yamaguchi, “Simultaneous acquisition of spectral
image information,” Opt. Lett. 16, 1277–1279 (1991).

7. J. Stoffels, A. Bluekens, and J. Petrus, “Color splitting prism
assembly,” U.S. patent 4,084,180 (11 April 1978).

8. M. W. Kudenov and E. L. Dereniak, “Compact real-time birefringent
imaging spectrometer,” Opt. Express 20, 17973–17986 (2012).

9. A. Wagadarikar, R. John, R. Willett, and D. Brady, “Single disperser
design for coded aperture snapshot spectral imaging,” Appl. Opt. 47,
B44–B51 (2008).

10. Y. Wu, I. O. Mirza, G. R. Arce, and D. W. Prather, “Development of a
digital-micromirror-device-based multishot snapshot spectral imaging
system,” Opt. Lett. 36, 2692–2694 (2011).

11. H. Arguello and G. R. Arce, “Rank minimization code aperture design
for spectrally selective compressive imaging,” IEEE Trans. Image
Process. 22, 941–954 (2013).

12. G. R. Arce, D. J. Brady, L. Carin, H. Arguello, and D. S. Kittle,
“Compressive coded aperture spectral imaging: an introduction,”
IEEE Signal Process. Mag. 31(1), 105–115 (2014).

13. Y. Mejia and H. Arguello, “Filtered gradient reconstruction algorithm
for compressive spectral imaging,” Opt. Eng. 56, 041306 (2016).

14. H. Arguello and G. R. Arce, “Colored coded aperture design by con-
centration of measure in compressive spectral imaging,” IEEE Trans.
Image Process. 23, 1896–1908 (2014).

15. H. Rueda, H. Arguello, and G. R. Arce, “DMD-based implementation
of patterned optical filter arrays for compressive spectral imaging,”
J. Opt. Soc. Am. A 32, 80–89 (2015).

16. C. Hinojosa, C. Correa, H. Arguello, and G. R. Arce, “Compressive
spectral imaging using multiple snapshot colored-mosaic detector
measurements,” Proc. SPIE 9870, 987004 (2016).

17. N. Diaz, H. R. Chacon, and H. A. Fuentes, “High-dynamic range
compressive spectral imaging by grayscale coded aperture adaptive
filtering,” Ing. Invest. 35, 53–60 (2015).

18. M. Yang, F. de Hoog, Y. Fan, and W. Hu, “Adaptive sampling by
dictionary learning for hyperspectral imaging,” IEEE J. Sel. Top.
Appl. Earth Obs. Remote Sens. 9, 4501–4509 (2016).

19. A. Averbuch, S. Dekel, and S. Deutsch, “Adaptive compressed
image sensing using dictionaries,” SIAM J. Imaging Sci. 5, 57–89
(2012).

20. S. Ji, Y. Xue, and L. Carin, “Bayesian compressive sensing,” IEEE
Trans. Signal Process. 56, 2346–2356 (2008).

21. M. L. Malloy and R. D. Nowak, “Near-optimal adaptive compressed
sensing,” IEEE Trans. Inf. Theory 60, 4001–4012 (2014).

22. L. Galvis, D. Lau, X. Ma, H. Arguello, and G. R. Arce, “Coded aperture
design in compressive spectral imaging based on side information,”
Appl. Opt. 56, 6332–6340 (2017).

23. J. H. Mathews and K. D. Fink, Numerical Methods Using MATLAB,
3rd ed. (Simon & Schuster, 1998).

24. C. V. Correa, H. Arguello, and G. R. Arce, “Spatiotemporal blue noise
coded aperture design for multi-shot compressive spectral imaging,”
J. Opt. Soc. Am. A 33, 2312–2322 (2016).

25. R. C. Gonzalez and R. E. Woods, Digital Image Processing, 3rd ed.
(Prentice-Hall, Inc., 2006).

26. M. A. T. Figueiredo, R. D. Nowak, and S. J. Wright, “Gradient projec-
tion for sparse reconstruction: Application to compressed sensing and
other inverse problems,” IEEE J. Sel. Top. Signal Process. 1, 586–597
(2007).

27. D. H. Foster, K. Amano, S. M. C. Nascimento, and M. J. Foster,
“Frequency of metamerism in natural scenes,” J. Opt. Soc. Am. A
23, 2359–2372 (2006).

28. F. Yasuma, T. Mitsunaga, D. Iso, and S. K. Nayar, “Generalized as-
sorted pixel camera: postcapture control of resolution, dynamic range,
and spectrum,” IEEE Trans. Image Process. 19, 2241–2253 (2010).

4900 Vol. 57, No. 17 / 10 June 2018 / Applied Optics Research Article


	XML ID funding

